Câu hỏi:

07/07/2025 39 Lưu

Cho hình chóp đều S.ABCD, gọi O là tâm của đa giác đáy (tham khảo hình vẽ).

Góc giữa đường thẳng SB và mặt phẳng (ABCD)  bằng góc nào sau đây? (ảnh 1)

Góc giữa đường thẳng SB và mặt phẳng (ABCD)  bằng góc nào sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

B

Ta có O là hình chiếu vuông góc của S xuống mặt phẳng (ABCD) nên góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng góc \(\widehat {SBO}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a, \(SA = a\sqrt 6 \) và vuông góc với đáy. Số đo của góc nhị diện [S, BD, A].  	 (ảnh 1)

Gọi O là giao điểm của AC và BD.

Vì ABCD là hình vuông nên AO ^ BD mà SA ^ BD (SA ^ (ABCD)) Þ BD ^ (SAO)

Þ BD ^ SO.

Do đó [S, BD, A] = \(\widehat {SOA}\).

Xét DSOA có \(\tan \widehat {SOA} = \frac{{SA}}{{OA}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \).

Vậy góc cần tìm bằng 60°.

Câu 2

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.Gọi M là trung điểm của SD. Tan của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng (ảnh 2)

Gọi O là tâm của hình vuông, hạ MH ^ BD.

Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).

Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).

Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).

Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP