Câu hỏi:

07/07/2025 20

Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng \(2a\) và cạnh bên bằng \(3a\). Khi đó:

a) Gọi \(M\) là trung điểm A'B', ta có \(C'M = a\sqrt 2 \).

b) Góc phẳng nhị diện [C, A'B', C']  bằng 60°.

c) Gọi \(K\) là trung điểm \(AB\),\(M\) là trung điểm A'B', khi đó: A'B' ^ MK.

d) Góc phẳng nhị diện [A, A'B', C] bằng 30°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Góc phẳng nhị diện [A, A'B', C] bằng 30°. (ảnh 1)

a) Gọi \(M\) là trung điểm A'B', suy ra C'M ^ A'B' (do tam giác A'B'C' đều).

Ta có: \(C'M = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).

b) Mặt khác CC' ^ A'B' (do ABC.A'B'C' là lăng trụ đứng).

Suy ra A'B' ^ (CMC') hay A'B' ^ CM.

Vậy \(\left( {CM,C'M} \right) = \widehat {CMC'}\) là góc phẳng nhị diện [C, A'B', C'] .

Suy ra \(\tan \widehat {CMC'} = \frac{{CC'}}{{C'M}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {CMC'} = 60^\circ \).

c) Gọi \(K\) là trung điểm \(AB\) thì \(MK\) là đường trung bình của hình chữ nhật \(ABB'A' \Rightarrow MK//AA' \Rightarrow A'B' \bot MK\).

 d) ta lại có A'B' ^ CM (câu a).

Vậy \((MK,CM) = \widehat {CMK}\) là góc phẳng nhị diện [A, A'B', C'] với \(\widehat {CMK} = 90^\circ - 60^\circ = 30^\circ \).

Đáp án: a) Sai;    b) Đúng;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

D (ảnh 1)

a) DSAB đều, H là trung điểm cạnh AB Þ SH ^ AB.

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB\end{array} \right.\) Þ SH ^ (ABC) Þ SH ^ HB.

Mà SH ^ CH (do SH ^ (ABC)) nên [B, SH, C] = \(\widehat {BHC}\).

b) Tương tự AH ^ SH, CH ^ SH nên [A, H, C] = \(\widehat {AHC}\).

c) Có SH ^ AB, CH ^ AB Þ [S, AB, C] là \(\widehat {SHC}\).

d) Mà SH ^ CH nên \(\widehat {SHC} = 90^\circ \).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   d) Sai.

Câu 2

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.Gọi M là trung điểm của SD. Tan của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng (ảnh 2)

Gọi O là tâm của hình vuông, hạ MH ^ BD.

Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).

Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).

Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).

Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP