Câu hỏi:
14/07/2025 7
PHẦN II. TRẢ LỜI NGẮN
Từ tờ giấy, cắt một hình tròn bán kính R cm như hình 3a. Tiếp theo, cắt hai hình tròn bán kính \(\frac{R}{2}\) rồi chồng lên hình tròn đầu tiên như Hình 3b. Tiếp theo, cắt bốn hình tròn bán kính \(\frac{R}{4}\) rồi chồng lên các hình trước như hình 3c. Cứ tiếp tục mãi. Khi đó tổng diện tích của các hình tròn là \(a\pi {R^2}\), aÎ ℤ. Tìm a.
PHẦN II. TRẢ LỜI NGẮN
Từ tờ giấy, cắt một hình tròn bán kính R cm như hình 3a. Tiếp theo, cắt hai hình tròn bán kính \(\frac{R}{2}\) rồi chồng lên hình tròn đầu tiên như Hình 3b. Tiếp theo, cắt bốn hình tròn bán kính \(\frac{R}{4}\) rồi chồng lên các hình trước như hình 3c. Cứ tiếp tục mãi. Khi đó tổng diện tích của các hình tròn là \(a\pi {R^2}\), aÎ ℤ. Tìm a.
Quảng cáo
Trả lời:
Diện tích của hình tròn bán kính R là S1 = πR2 (cm2).
Diện tích của hình tròn bán kính \(\frac{R}{2}\) là \({S_2} = \pi .{\left( {\frac{R}{2}} \right)^2}\) (cm2).
Diện tích của hình tròn bán kính \(\frac{R}{4}\) là \({S_3} = \pi .{\left( {\frac{R}{4}} \right)^2}\) (cm2).
Tổng diện tích của các hình tròn là: \({S_n} = {S_1} + 2{S_2} + 4{S_3} + ... = \pi {R^2} + \pi {R^2}\frac{1}{2} + \pi {R^2}\frac{1}{4} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu u1 = πR2 và công bội \(q = \frac{1}{2}\)
nên \({S_n} = \frac{{\pi {R^2}}}{{1 - \frac{1}{2}}} = 2\pi {R^2}\). Suy ra a = 2.
Trả lời: 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
\(\mathop {\lim }\limits_{x \to - \infty } \left( {2{x^3} - {x^2} + 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right)} \right]\).
Vì \(\mathop {\lim }\limits_{x \to - \infty } {x^3} = - \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {2 - \frac{1}{x} + \frac{1}{{{x^3}}}} \right) = 2\) nên \(\mathop {\lim }\limits_{x \to - \infty } \left( {2{x^3} - {x^2} + 1} \right) = - \infty \).
Lời giải
D
Ta có \(P = 2,13131313... = 2 + \frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\)
Ta có \(\frac{{13}}{{100}} + \frac{{13}}{{{{100}^2}}} + \frac{{13}}{{{{100}^3}}} + ...\) là tổng của cấp số nhân lùi vô hạn với \({u_1} = \frac{{13}}{{100}}\) và \(q = \frac{1}{{100}}\).
Khi đó \(P = 2 + \frac{{\frac{{13}}{{100}}}}{{1 - \frac{1}{{100}}}} = \frac{{211}}{{99}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.