Cho hình hộp ABCD.A′B′C′D′ (Hình vẽ).
a) Trong mặt phẳng (ABCD), tìm vectơ tổng \[\overrightarrow {AB} + \overrightarrow {AD} \].
b) So sánh hai vectơ \[\overrightarrow {BD} ,\overrightarrow {B'D'} \].
c) Giải thích tại sao \[\overrightarrow {AB} + \overrightarrow {B'D'} = \overrightarrow {AD} \].
Cho hình hộp ABCD.A′B′C′D′ (Hình vẽ).

a) Trong mặt phẳng (ABCD), tìm vectơ tổng \[\overrightarrow {AB} + \overrightarrow {AD} \].
b) So sánh hai vectơ \[\overrightarrow {BD} ,\overrightarrow {B'D'} \].
c) Giải thích tại sao \[\overrightarrow {AB} + \overrightarrow {B'D'} = \overrightarrow {AD} \].
Câu hỏi trong đề: 9 bài tập Tổng và hiệu của hai vectơ (có lời giải) !!
Quảng cáo
Trả lời:
a) \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \); \(\overrightarrow {{A^\prime }{B^\prime }} + \overline {{B^\prime }{C^\prime }} = \overline {{A^\prime }{C^\prime }} {\rm{. }}\)
b) Vî AA'B'B là hình bình hành, suy ra \(AB//{A^\prime }{B^\prime }\) và \(AB = {A^\prime }{B^\prime }\).
Ta có hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {{A^\prime }{B^\prime }} \) cùng hướng và có độ dài bằng nhau nên \(\overrightarrow {AB} = \overrightarrow {{A^\prime }{B^\prime }} \). Tương tự: \(\overrightarrow {BC} = \overrightarrow {{B^\prime }{C^\prime }} ;\overrightarrow {AC} = \overrightarrow {{A^\prime }{C^\prime }} \).
c) Vì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \) và \(\overrightarrow {{A^\prime }{B^\prime }} + \overrightarrow {{B^\prime }{C^\prime }} = \overrightarrow {{A^\prime }{C^\prime }} \) mà \(\overrightarrow {AC} = \overrightarrow {{A^\prime }{C^\prime }} \) nên \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {{A^\prime }{B^\prime }} + \overrightarrow {{B^\prime }{C^\prime }} \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) là hình lăng trụ nên \(A{A^\prime }{C^\prime }C\) là hình bình hành, suy ra \(\overrightarrow {{A^\prime }{C^\prime }} = \overrightarrow {AC} \).
Do đó \(\overrightarrow {BA} + \overrightarrow {{A^\prime }{C^\prime }} = \overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BC} \).
Tương tự, ta cūng có \(A{A^\prime }{B^\prime }B\) là hình bình hành, suy ra \(\overrightarrow {A{A^\prime }} = \overrightarrow {B{B^\prime }} \).
Do đó \(\overrightarrow {BC} + \overrightarrow {A{A^\prime }} = \overrightarrow {BC} + \overrightarrow {B{B^\prime }} = \overrightarrow {B{C^\prime }} \)
Lời giải

vì \(SE = \frac{1}{3}SA,SF = \frac{1}{3}SB \Rightarrow \frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\left( { = \frac{1}{3}} \right)\)
Tam giác SAB có: \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\) nên \({\rm{FE}}//{\rm{AB}}\) và \(EF = \frac{1}{3}AB\).
Vì hai vectơ \(\overrightarrow {EF} \) và \(\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AB} \) (1)
Vî \({\rm{ABCD}}\) là hình bình hành nên \(AB = CD\) và \({\rm{AB}}//{\rm{CD}}\). Do đó, \(\overrightarrow {AB} = \overrightarrow {DC} \) (2) Từ (1) và (2) ta có: \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {DC} \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

