Câu hỏi:

26/07/2025 10 Lưu

Một chiếc đèn chùm treo có khối lượng m = 5 kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích SA, SB, SC, SD sao cho S.ABCD là hình chóp tứ giác đều có góc ASC = 60o (Hình 21).
Media VietJack

a) Sử dụng công thức \[\overrightarrow P  = m\overrightarrow g \] trong đó \[\overrightarrow g \] là vectơ gia tốc rơi tự do có độ lớn 10 m/s2, tìm độ lớn của trọng lực \[\overrightarrow P \] tác động lên chiếc đèn chùm.

b) Tìm độ lớn của lực căng cho mỗi sợi xích.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\vec P = m\vec g|\vec P| = m|\vec g| = 5.10 = 50\;{\rm{N}}\).

Vậy độ lớn của trọng lực \(\vec P\) tác động lên chiếc đèn chùm là \(50\;{\rm{N}}\).

b)

Một chiếc đèn chùm treo có khối lượng m = 5 kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích SA, SB, SC, SD (ảnh 1)

Giả sử đèn chùm được minh họa như hình vẽ trên.

Vì đèn ở vị trí cân bẳng nên \(\vec P + {\vec T_1} + \overrightarrow {{T_2}}  + \overrightarrow {{T_3}}  + \overrightarrow {{T_4}}  = \vec 0\)\( \Leftrightarrow \vec P + {\vec P^\prime } = \vec 0 \Leftrightarrow \vec P =  - {\vec P^\prime } \Leftrightarrow P = {P^\prime }\)

Có \(\left| {{{\vec T}_1}} \right| = \left| {{{\vec T}_2}} \right| = \left| {{{\vec T}_3}} \right| = \left| {{{\vec T}_4}} \right| = |\vec T|\)

Từ hình vẽ ta có: P'=4Tcos30°T=P'4cos30°=5023=253314,4N

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1,5 tấn = 1 500 kg.
Độ lớn của trọng lực tác dụng lên chiếc xe là: \[\left| {\overrightarrow P } \right|\] = m \[\left| {\overrightarrow g } \right|\] = 1 500 . 9,8 = 14 700 (N). Vectơ \[\overrightarrow d \] biểu thị độ dịch chuyển của xe có độ dài là \[\left| {\overrightarrow d } \right|\] = 30 (m) và\[\left( {\overrightarrow P ,\overrightarrow d } \right) = {90^o} - {5^o} = {85^o}\]
 
Công sinh ra bởi trọng lực \[\overrightarrow P \] khi xe đi hết đoạn đường dốc dài 30 m là: A=P.d=P.d.cosP,d=14700.30.cos85o38436 (J)

Lời giải

Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).

Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).

Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)

vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)

Từ (1) và (2) ta có: \(\overrightarrow {{F_1}}  = \frac{{2025}}{{2116}}\overrightarrow {{F_2}}  \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)