Câu hỏi:

26/07/2025 12 Lưu

Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà và lần lượt buộc vào ba điểm A, B, C trên đèn tròn sao cho các lực căng \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \] lần lượt trên mỗi dây OA, OB, OC đôi một vuông góc với nhau và \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15{\rm{ }}(N)\]. (Hình 14). Tính trọng lượng của chiếc đèn tròn đó.
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O  (ảnh 1)

Gọi \[{A_1}{\rm{, }}{B_1},{C_1}\] lần lượt là các điểm sao cho \[\overrightarrow {O{A_1}}  = \overrightarrow {{F_1}} ;\overrightarrow {O{B_1}}  = \overrightarrow {{F_2}} ;\overrightarrow {O{C_1}}  = \overrightarrow {{F_3}} \]. Lấy các điểm \[{D_1},{A'_1}{\rm{, }}{B'_1},{D'_1}\] sao cho \[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] là hình hộp (Hình 15).  

Khi đó, áp dụng quy tắc hình hộp, ta có: \[{\overrightarrow {OA} _1} + \overrightarrow {O{B_1}}  + \overrightarrow {O{C_1}} {\rm{ = }}\overrightarrow {O{D_1}} \]

Mặt khác, do các lực căng \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \] đôi một vuông góc và \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15{\rm{ }}(N)\] nên hình hộp

\[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] có ba cạnh OA1, OB1, OC1, đôi một vuông góc và bằng nhau. Vì thế hình hộp đó là hình lập phương có độ dài cạnh bằng 15. Suy ra độ dài đường chéo \[O{D'_1}\] của hình lập phương đó bằng \[15\sqrt 3 \].

Do chiếc đèn ở vị trí cân bằng nên \[\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow P \], ở đó \[\overrightarrow P \] là trọng lực tác dụng lên chiếc đèn. Suy ra trọng lượng của chiếc đèn là: \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \] (N).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1,5 tấn = 1 500 kg.
Độ lớn của trọng lực tác dụng lên chiếc xe là: \[\left| {\overrightarrow P } \right|\] = m \[\left| {\overrightarrow g } \right|\] = 1 500 . 9,8 = 14 700 (N). Vectơ \[\overrightarrow d \] biểu thị độ dịch chuyển của xe có độ dài là \[\left| {\overrightarrow d } \right|\] = 30 (m) và\[\left( {\overrightarrow P ,\overrightarrow d } \right) = {90^o} - {5^o} = {85^o}\]
 
Công sinh ra bởi trọng lực \[\overrightarrow P \] khi xe đi hết đoạn đường dốc dài 30 m là: A=P.d=P.d.cosP,d=14700.30.cos85o38436 (J)

Lời giải

Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).

Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).

Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)

vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)

Từ (1) và (2) ta có: \(\overrightarrow {{F_1}}  = \frac{{2025}}{{2116}}\overrightarrow {{F_2}}  \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)