Trọng tâm của tứ diện ABCD là một điểm I thoả mãn \[\overrightarrow {AI} {\rm{ }} = {\rm{ }}3\overrightarrow {IG} \], ở đó G là trọng tâm của tam giác BCD. Hãy tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8 cm (H.2.30).

Quảng cáo
Trả lời:

Giả sử khối rubik (đồng chất) hình tứ diện đều được mô phỏng như hình vē.
G là trọng tâm \({\rm{DBCD}},{\rm{I}}\) là trọng tâm của tứ diện
Vì ABCD là hình tứ diện đều nên \(AG \bot (BCD)\) và \(AG = 8\;{\rm{cm}}\).
vi \(\overrightarrow {AI} = 3\overrightarrow {IG} \) nên 3 diểm \({\rm{A}},{\rm{I}},{\rm{G}}\) thẳng hàng và \(IG = \frac{1}{4}AG\).
Do đó \({\rm{IG}} \bot ({\rm{BCD}})\). Khi đó \(d(I,(BCD)) = IG = \frac{1}{4}AG = 2\;{\rm{cm}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).
Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).
Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)
vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)
Từ (1) và (2) ta có: \(\overrightarrow {{F_1}} = \frac{{2025}}{{2116}}\overrightarrow {{F_2}} \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.