Câu hỏi:

26/07/2025 4 Lưu

Trọng tâm của tứ diện ABCD là một điểm I thoả mãn \[\overrightarrow {AI} {\rm{ }} = {\rm{ }}3\overrightarrow {IG} \], ở đó G là trọng tâm của tam giác BCD. Hãy tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8 cm (H.2.30).
Trọng tâm của tứ diện ABCD là một điểm I thoả mãn AI = 3IG, ở đó G là trọng tâm của tam giác BCD (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trọng tâm của tứ diện ABCD là một điểm I thoả mãn AI = 3IG, ở đó G là trọng tâm của tam giác BCD (ảnh 2)

Giả sử khối rubik (đồng chất) hình tứ diện đều được mô phỏng như hình vē.

G là trọng tâm \({\rm{DBCD}},{\rm{I}}\) là trọng tâm của tứ diện

Vì ABCD là hình tứ diện đều nên \(AG \bot (BCD)\) và \(AG = 8\;{\rm{cm}}\).

vi \(\overrightarrow {AI}  = 3\overrightarrow {IG} \) nên 3 diểm \({\rm{A}},{\rm{I}},{\rm{G}}\) thẳng hàng và \(IG = \frac{1}{4}AG\).

Do đó \({\rm{IG}} \bot ({\rm{BCD}})\). Khi đó \(d(I,(BCD)) = IG = \frac{1}{4}AG = 2\;{\rm{cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1,5 tấn = 1 500 kg.
Độ lớn của trọng lực tác dụng lên chiếc xe là: \[\left| {\overrightarrow P } \right|\] = m \[\left| {\overrightarrow g } \right|\] = 1 500 . 9,8 = 14 700 (N). Vectơ \[\overrightarrow d \] biểu thị độ dịch chuyển của xe có độ dài là \[\left| {\overrightarrow d } \right|\] = 30 (m) và\[\left( {\overrightarrow P ,\overrightarrow d } \right) = {90^o} - {5^o} = {85^o}\]
 
Công sinh ra bởi trọng lực \[\overrightarrow P \] khi xe đi hết đoạn đường dốc dài 30 m là: A=P.d=P.d.cosP,d=14700.30.cos85o38436 (J)

Lời giải

Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).

Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).

Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)

vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)

Từ (1) và (2) ta có: \(\overrightarrow {{F_1}}  = \frac{{2025}}{{2116}}\overrightarrow {{F_2}}  \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)