Câu hỏi:

27/07/2025 30 Lưu

Tìm tập nghiệm S của bất phương trình \({\log _2}\left( {3x - 2} \right) + {\log _{\frac{1}{2}}}\left( {6 - 5x} \right) > 0\). 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C

Điều kiện: \(\left\{ \begin{array}{l}3x - 2 > 0\\6 - 5x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > \frac{2}{3}\\x < \frac{6}{5}\end{array} \right.\).

\({\log _2}\left( {3x - 2} \right) + {\log _{\frac{1}{2}}}\left( {6 - 5x} \right) > 0\)\( \Leftrightarrow {\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\)\( \Leftrightarrow 3x - 2 > 6 - 5x\)\( \Leftrightarrow 8x > 8 \Leftrightarrow x > 1\).

Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình là \(S = \left( {1;\frac{6}{5}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Điều kiện \(\left\{ \begin{array}{l}6 + x > 0\\9x > 0\end{array} \right. \Leftrightarrow x > 0\).

log3(6 + x) + log39x – 5 = 0 Û log3[9x(x + 6)] = 5 Û 9x2 + 54x = 35 Û x2 + 6x – 27 = 0

Û x = 9 (loại) hoặc x = 3 (thỏa mãn).

Vậy phương trình có 1 nghiệm.

Lời giải

Ta có A = 200, t = 3 thì S(3) = 200.e3r = 500 Û \(r = \frac{1}{3}\ln \frac{5}{2}\).

Số vi khuẩn có được nhiều hơn gấp 10 lần số vi khuẩn ban đầu nên

A.ert = 10A Û ert = 10 Û rt = ln10 \( \Leftrightarrow t = \frac{{\ln 10}}{r} = \frac{{3\ln 10}}{{\ln \frac{5}{2}}} \approx 7,54\) giờ.

Vậy sau 7,54 giờ thì số lượng vi khuẩn có được nhiều hơn gấp 10 lần số lượng vi khuẩn ban đầu.

Trả lời: 7,54.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP