Câu hỏi:

27/07/2025 6 Lưu

Một ngân hàng X, quy định về số tiền nhận được của khách hàng sau n năm gửi tiền vào ngân hàng tuân theo công thức P(n) = A(1 +8%)n, trong đó A là số tiền gửi ban đầu của khách hàng. Hỏi số tiền ít nhất mà khách hàng phải gửi là bao nhiêu để sau 3 năm khách hàng đó nhận được lớn hơn 850 triệu đồng (kết quả làm tròn đến hàng triệu).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau 3 năm số tiền khách hàng rút về lớn hơn 850 triệu đồng là

A(1 + 8%)3 > 850 \( \Leftrightarrow A > \frac{{850}}{{{{\left( {1 + 8\% } \right)}^3}}} \approx 674,8\).

Vậy số tiền ít nhất mà khách hàng phải gửi để sau 3 năm khách hàng đó nhận được lớn hơn 850 triệu đồng là 675 triệu đồng.

Trả lời: 675.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: 2x + 1 > 0, x Î ℝ.

log2(2x + 1) > 2 + x Û 2x  + 1 > 22 + x  Û 3.2x < 1 Û \({2^x} < \frac{1}{3}\)\( \Leftrightarrow x < {\log _2}\frac{1}{3}\).

Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ;{{\log }_2}\frac{1}{3}} \right)\).

Số nghiệm nguyên thuộc [−2024; 2024] của bất phương trình là {−2024; −2023; …; −2} có 2023 số.

Trả lời: 2023.

Câu 2

Lời giải

A

\({\left( {\sqrt 7 + \sqrt 6 } \right)^{{x^2}}} < \frac{1}{{\sqrt 7 - \sqrt 6 }}\)\( \Leftrightarrow {\left( {\sqrt 7 + \sqrt 6 } \right)^{{x^2}}} < \sqrt 7 + \sqrt 6 \)Û x2 < 1 Û −1 < x < 1.

Vậy tập nghiệm của phương trình là S = (−1; 1).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP