Câu hỏi:

27/07/2025 5 Lưu

Một người gửi ngân hàng 200 triệu đồng với kì hạn 1 tháng theo hình thức lãi kép, lãi suất 0,58% một tháng (kể từ tháng thứ hai trở đi, tiền lãi được tính theo phần trăm của tổng tiền gốc và tiền lãi tháng trước đó). Hỏi sau ít nhất bao nhiêu tháng thì người đó có tối thiểu 225 triệu đồng trong tài khoản tiết kiệm, biết rằng ngân hàng chỉ tính lãi khi đến kì hạn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo hình thức lãi kép, tổng số tiền cả gốc lẫn lãi trong tài khoản của người đó sau n tháng tháng là A = 200(1 + 0,58%)n = 200.1,0058n (triệu đồng).

Theo đề bài A ³ 225 Û 200.1,0058n ³ 225 \( \Leftrightarrow 1,{0058^n} \ge \frac{9}{8}\)\( \Leftrightarrow n \ge {\log _{1,0058}}\frac{9}{8} \approx 20,37\).

Vì ngân hàng chỉ tính lãi khi đền kì hạn nên phải sau ít nhất 21 tháng người đó mới có tối thiểu 225 triệu đồng trong tài khoản.

Trả lời: 21.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: 2x + 1 > 0, x Î ℝ.

log2(2x + 1) > 2 + x Û 2x  + 1 > 22 + x  Û 3.2x < 1 Û \({2^x} < \frac{1}{3}\)\( \Leftrightarrow x < {\log _2}\frac{1}{3}\).

Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ;{{\log }_2}\frac{1}{3}} \right)\).

Số nghiệm nguyên thuộc [−2024; 2024] của bất phương trình là {−2024; −2023; …; −2} có 2023 số.

Trả lời: 2023.

Câu 2

Lời giải

A

\({\left( {\sqrt 7 + \sqrt 6 } \right)^{{x^2}}} < \frac{1}{{\sqrt 7 - \sqrt 6 }}\)\( \Leftrightarrow {\left( {\sqrt 7 + \sqrt 6 } \right)^{{x^2}}} < \sqrt 7 + \sqrt 6 \)Û x2 < 1 Û −1 < x < 1.

Vậy tập nghiệm của phương trình là S = (−1; 1).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP