Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \cos x} ,\) trục hoành và các đường thẳng \(x = 0,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi \(D\) quay quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \cos x} ,\) trục hoành và các đường thẳng \(x = 0,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi \(D\) quay quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tam giác OAB vuông tại A , có \({\rm{AB}} = {\rm{OA}}\). tana = a.tana.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy \({\rm{r}} = {\rm{AB}} = {\rm{a}}\).tana và chiều cao \({\rm{h}} = {\rm{OA}} = {\rm{a}}\).
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \)
b) Có \({V^\prime } = \frac{1}{3}\pi {a^3} \cdot 2\tan \alpha \cdot \frac{1}{{{{\cos }^2}\alpha }}\)
Vi \(0 < \alpha \le \frac{\pi }{4} = > 0 < \) tan \(\alpha \le 1\) nên \({V^\prime } > 0\). Do đó \(V\) là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\)
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\)
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Lời giải
Vì mặt cắt là tam giác vuông có một góc 450 nên mặt cắt là tam giác vuông cân.
Do đó diện tích của mặt cắt là: \(S(x) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\)
Thể tích vật thể là: \(V = \int_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)} dx = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2 = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.