CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(N \in (Oxy)\) nên \(N(x;y;0)\).

Xét  NBO vuông tại \({\rm{B}}\), ta có: tan32°=NBOB=xyx2+y2=ON2(1). Xét  có ON=MC=OMsin65°=14sin65°12,67 (2)

Từ (1) và (2), ta có hệ: xy=tan32°x2+y2=12,672x0,62y(0,62y)2+y2=12,672x6,68y10,77

Suy ra \(N(6,68;10,77;0)\). Do đó \(\overrightarrow {ON}  = 6,68\vec i + 10,77\vec j\)

Xét  vuông tại \({\rm{C}}\), ta có: OC=OMcos65°=14cos65°5,92. Suy ra \(C(0;0;5,92)\). Do đó \(\overrightarrow {OC}  = 5,92\vec k\).

Ta có \(\overrightarrow {OM}  = \overrightarrow {ON}  + \overrightarrow {OC}  = 6,68\vec i + 10,77\vec j + 5,92\vec k\).

Vậy \({\rm{M}}(6,68;10,77;5,92)\).

Lời giải

Gọi tọa độ điểm \(A\) là \(\left( {{x_A};{y_A};{z_A}} \right)\). Vì chiểu rộng của sân là \(6,1\;{\rm{m}}\) nên \({x_A} = 6,1\). Do một nửa chiều dài của sân là \(6,7\;{\rm{m}}\) nên \({y_A} = 6,7\). Điểm \(A\) thuộc mặt phẳng \((Oxy)\) nên \({z_A} = 0\). Vì vậy, điểm \(A\) có tọa độ là \((6,1;6,7;0)\).

Độ dài đoạn thẳng AB là \(1,55\;{\rm{m}}\) nên điểm \(B\) có toạ độ là \((6,1;6,7;1,55)\).

Vậy ta có: \(\overrightarrow {AB}  = (6,1 - 6,1;6,7 - 6,7;1,55 - 0)\), tức là \(\overrightarrow {AB}  = (0;0;1,55)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP