Trường Nguyễn Văn Trỗi muốn làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là \(2,25\)mét, chiều rộng tiếp giáp với mặt đất là \(3\) mét. Giá thuê mỗi mét vuông là \(1500000\) đồng. Vậy số tiền nhà trường phải trả là:
Trường Nguyễn Văn Trỗi muốn làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là \(2,25\)mét, chiều rộng tiếp giáp với mặt đất là \(3\) mét. Giá thuê mỗi mét vuông là \(1500000\) đồng. Vậy số tiền nhà trường phải trả là:
Quảng cáo
Trả lời:

Chọn D
Gọi phương trình parabol \(\left( P \right):y = a{x^2} + bx + c\). Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ \(Oxy\) sao cho \(\left( P \right)\) có đỉnh \(I \in Oy\) (như hình vẽ).
Chọn D
Gọi phương trình parabol \(\left( P \right):y = a{x^2} + bx + c\). Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ \(Oxy\) sao cho \(\left( P \right)\) có đỉnh \(I \in Oy\) (như hình vẽ).
Ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{9}{4} = c,\left( {I \in \left( P \right)} \right)\\\frac{9}{4}a - \frac{3}{2}b + c = 0\left( {A \in \left( P \right)} \right)\\\frac{9}{4}a + \frac{3}{2}b + c = 0\left( {B \in \left( P \right)} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}c = \frac{9}{4}\\a = - 1\\b = 0\end{array} \right.\).
Vậy \(\left( P \right):y = - {x^2} + \frac{9}{4}\).
Dựa vào đồ thị, diện tích cửa parabol là:
\(S = \int\limits_{\frac{{ - 3}}{2}}^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right){\rm{d}}x} \)\( = 2\int\limits_0^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right){\rm{d}}x} \)\[ = \left. {2\left( {\frac{{ - {x^3}}}{3} + \frac{9}{4}x} \right)} \right|_0^{\frac{9}{4}}\]\( = \frac{9}{2}{{\rm{m}}^2}\).
Số tiền phải trả là: \(\frac{9}{2}.1500000 = 6750000\) đồngHot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Vì \(AB = 4dm;BC = 8dm.\)\( \Rightarrow A( - 2;4),\)\(B(2;4),C(2; - 4),D( - 2; - 4)\).
parabol là: \(y = {x^2}\) hoặc \(y = - {x^2}\)
Diện tích phần tô đậm là \[{S_1} = 4\int\limits_0^2 {{x^2}dx = \frac{{32}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})} \]
Diện tích hình chữ nhật là \[S = 4.8 = 32\begin{array}{*{20}{c}}{}\end{array}({m^2})\]
Diện tích phần trắng là \[{S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})\]
Tổng chi phí trang chí là:
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.