Câu hỏi:

29/07/2025 12 Lưu

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng \[OO' = 5\]\[{\rm{cm}}\], \[OA = 10\]\[{\rm{cm}}\], \[OB = 20\] \[{\rm{cm}}\], đường cong \[AB\] là một phần của parabol có đỉnh là điểm\[A\]. Thể tích của chiếc mũ bằng

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. (ảnh 2)

Ta gọi thể tích của chiếc mũ là \(V\).

Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\) cm và đường cao \(OO' = 5\) cm là \({V_1}\).

Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong \(AB\)và hai trục tọa độ quanh trục \(Oy\)là \({V_2}\).

Ta có \(V = {V_1} + {V_2}\)

\({V_1} = {5.10^2}\pi  = 500\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Chọn hệ trục tọa độ như hình vẽ.

Do parabol có đỉnh \(A\) nên nó có phương trình dạng \((P):y = a{(x - 10)^2}\).

Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\).

Do đó, \(\left( P \right):y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \) (do \(x < 10\)).

Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}{\rm{dy}}}  = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do đó \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi  + 500\pi  = \frac{{2500}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Chọn hệ trục \[Oxy\] như hình vẽ.

Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (ảnh 2)

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} =  - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y =  - \frac{8}{{361}}{x^2} + 2\].

Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} =  - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y =  - \frac{1}{{40}}{x^2} + \frac{5}{2}\].

Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].

Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng

Lời giải

Chọn B

Sân vận động Sport Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. Đây là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức tại Singapore năm (ảnh 2)

Chọn hệ trục như hình vẽ

Ta cần tìm diện tích của \(S\left( x \right)\)thiết diện.

Gọi \(d\left( {O,MN} \right) = x\)

\(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\)

Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)}  = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]

\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }}.\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}}  \Rightarrow {R^2} = \frac{{{{90}^2}}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\]

\[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi  - \frac{1}{2}} \right){R^2} = \left( {\pi  - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]

Thể tích khoảng không cần tìm là

\(V = \int\limits_{ - 75}^{75} {\left( {\pi  - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right) \approx 115586{m^3}.} \)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP