Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn \(28\,{\rm{cm}}\), trục nhỏ \(25\,{\rm{cm}}\). Biết cứ \(1000\,{\rm{c}}{{\rm{m}}^3}\) dưa hấu sẽ làm được cốc sinh tố giá \(20000\) đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn \(28\,{\rm{cm}}\), trục nhỏ \(25\,{\rm{cm}}\). Biết cứ \(1000\,{\rm{c}}{{\rm{m}}^3}\) dưa hấu sẽ làm được cốc sinh tố giá \(20000\) đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Quảng cáo
Trả lời:
Chọn A
Đường elip có trục lớn \(28\,{\rm{cm}}\), trục nhỏ \(25\,{\rm{cm}}\) có phương trình \( + \frac{{{y^2}}}{{{{\left( {\frac{{25}}{2}} \right)}^2}}} = 1\)\( \Leftrightarrow {y^2} = {\left( {\frac{{25}}{2}} \right)^2}\left( {1 - \frac{{{x^2}}}{{{{14}^2}}}} \right)\)\( \Leftrightarrow y = \pm \frac{{25}}{2}\sqrt {1 - \frac{{{x^2}}}{{{{14}^2}}}} \).
Do đó thể tích quả dưa là \[V = \pi \int\limits_{ - 14}^{14} {{{\left( {\frac{{25}}{2}\sqrt {1 - \frac{{{x^2}}}{{{{14}^2}}}} } \right)}^2}{\rm{d}}x} \]\( = \pi {\left( {\frac{{25}}{2}} \right)^2}\int\limits_{ - 14}^{14} {{{\left( {1 - \frac{{{x^2}}}{{{{14}^2}}}} \right)}^2}{\rm{d}}x} \)\( = \pi {\left( {\frac{{25}}{2}} \right)^2}.\left. {\left( {x - \frac{{{x^3}}}{{{{3.14}^2}}}} \right)} \right|_{ - 14}^{14}\)\( = \pi {\left( {\frac{{25}}{2}} \right)^2}.\frac{{56}}{3}\)\( = \frac{{8750\pi }}{3}\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Do đó tiền bán nước thu được là \(\frac{{8750\pi .20000}}{{3.1000}} \approx 183259\,\)đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Chọn B
Chọn hệ trục như hình vẽ
Ta cần tìm diện tích của \(S\left( x \right)\)thiết diện.
Gọi \(d\left( {O,MN} \right) = x\)
\(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\)
Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)} = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]
\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }}.\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \Rightarrow {R^2} = \frac{{{{90}^2}}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\]
\[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi - \frac{1}{2}} \right){R^2} = \left( {\pi - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]
Thể tích khoảng không cần tìm là
\(V = \int\limits_{ - 75}^{75} {\left( {\pi - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right) \approx 115586{m^3}.} \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.