Câu hỏi:

29/07/2025 32 Lưu

Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn \(28\,{\rm{cm}}\), trục nhỏ \(25\,{\rm{cm}}\). Biết cứ \(1000\,{\rm{c}}{{\rm{m}}^3}\) dưa hấu sẽ làm được cốc sinh tố giá \(20000\) đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Đường elip có trục lớn \(28\,{\rm{cm}}\), trục nhỏ \(25\,{\rm{cm}}\) có phương trình \( + \frac{{{y^2}}}{{{{\left( {\frac{{25}}{2}} \right)}^2}}} = 1\)\( \Leftrightarrow {y^2} = {\left( {\frac{{25}}{2}} \right)^2}\left( {1 - \frac{{{x^2}}}{{{{14}^2}}}} \right)\)\( \Leftrightarrow y =  \pm \frac{{25}}{2}\sqrt {1 - \frac{{{x^2}}}{{{{14}^2}}}} \).

Do đó thể tích quả dưa là \[V = \pi \int\limits_{ - 14}^{14} {{{\left( {\frac{{25}}{2}\sqrt {1 - \frac{{{x^2}}}{{{{14}^2}}}} } \right)}^2}{\rm{d}}x} \]\( = \pi {\left( {\frac{{25}}{2}} \right)^2}\int\limits_{ - 14}^{14} {{{\left( {1 - \frac{{{x^2}}}{{{{14}^2}}}} \right)}^2}{\rm{d}}x} \)\( = \pi {\left( {\frac{{25}}{2}} \right)^2}.\left. {\left( {x - \frac{{{x^3}}}{{{{3.14}^2}}}} \right)} \right|_{ - 14}^{14}\)\( = \pi {\left( {\frac{{25}}{2}} \right)^2}.\frac{{56}}{3}\)\( = \frac{{8750\pi }}{3}\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Do đó tiền bán nước thu được là \(\frac{{8750\pi .20000}}{{3.1000}} \approx 183259\,\)đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Vì \(AB = 4dm;BC = 8dm.\)\( \Rightarrow A( - 2;4),\)\(B(2;4),C(2; - 4),D( - 2; - 4)\).

parabol là: \(y = {x^2}\) hoặc \(y =  - {x^2}\)

Diện tích phần tô đậm là \[{S_1} = 4\int\limits_0^2 {{x^2}dx = \frac{{32}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})} \]

Diện tích hình chữ nhật là \[S = 4.8 = 32\begin{array}{*{20}{c}}{}\end{array}({m^2})\]

Diện tích phần trắng là \[{S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})\]

Tổng chi phí trang chí là:T=(323.5000+643.2500)106666667đ

Lời giải

Chọn D

Chọn hệ trục \[Oxy\] như hình vẽ.

Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (ảnh 2)

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} =  - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y =  - \frac{8}{{361}}{x^2} + 2\].

Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} =  - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y =  - \frac{1}{{40}}{x^2} + \frac{5}{2}\].

Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].

Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP