Cho vật thể đáy là hình tròn có bán kính bằng 1 (tham khảo hình vẽ). Khi cắt vật thể bằng mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Thể tích \(V\) của vật thể đó là
Cho vật thể đáy là hình tròn có bán kính bằng 1 (tham khảo hình vẽ). Khi cắt vật thể bằng mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Thể tích \(V\) của vật thể đó là

Quảng cáo
Trả lời:

Chọn C
Do vật thể có đáy là đường tròn và khi cắt bởi mặt phẳng vuông góc với trục \(Ox\) được thiết diện là tam giác đều do đó vật thể đối xứng qua mặt phẳng vuông góc với trục \(Oy\) tại điểm \(O\).
Cạnh của tam giác đều thiết diện là: \(a = 2\sqrt {1 - {x^2}} \).
Diện tích tam giác thiết diện là: \(S = \frac{{{a^2}\sqrt 3 }}{4} = \left( {1 - {x^2}} \right)\sqrt 3 \).
Thể tích khối cần tìm là:
\(V = 2\int\limits_0^1 {Sdx} = 2\int\limits_0^1 {\sqrt 3 \left( {1 - {x^2}} \right) = \left. {2\sqrt 3 \left( {x - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = \frac{{4\sqrt 3 }}{3}} \).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Vì \(AB = 4dm;BC = 8dm.\)\( \Rightarrow A( - 2;4),\)\(B(2;4),C(2; - 4),D( - 2; - 4)\).
parabol là: \(y = {x^2}\) hoặc \(y = - {x^2}\)
Diện tích phần tô đậm là \[{S_1} = 4\int\limits_0^2 {{x^2}dx = \frac{{32}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})} \]
Diện tích hình chữ nhật là \[S = 4.8 = 32\begin{array}{*{20}{c}}{}\end{array}({m^2})\]
Diện tích phần trắng là \[{S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})\]
Tổng chi phí trang chí là:
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.