Câu hỏi:

30/07/2025 12 Lưu

Một thiết bị thăm dò đáy biển đang lặn với vận tốc \[\overrightarrow v \]= (10; 8; –3) (Hình vẽ). Cho biết vận tốc của dòng hải lưu của vùng biển là \[\overrightarrow w \] = (3,5; 1; 0).
Một thiết bị thăm dò đáy biển đang lặn với vận tốc v = (10; 8; –3) (Hình vẽ). Cho biết vận tốc của dòng hải lưu của vùng biển W (ảnh 1)

a) Tìm toạ độ của vectơ tổng hai vận tốc \[\overrightarrow v \] và \[\overrightarrow w \].

b) Giả sử thiết bị thăm dò lặn với vận tốc \[\overrightarrow u \]= (7; 2; 0), hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\vec v + \vec w = (10 + 3,5;8 + 1; - 3 + 0) = (13,5;9; - 3)\).

b) \(\vec u = (7;2;0) = 2(3,5;1;0) = 2\vec w\).

Do đó hai vectơ này cùng phương, cùng hướng với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chậu cây được đặt trên một giá đỡ có bốn chân với điểm đặt S(0; 0; 20) và các điểm chạm mặt đất của bốn chân lần lượt (ảnh 1)
Tứ giác ABCD có hai đường chéo bằng nhau và vuông góc với nhau tại trung điểm của mỗi đường nên là hình vuông.
Ta có \[\overrightarrow {SA} \] = (20; 0; –20), \[\overrightarrow {SB} \] = (0; 20; –20), \[\overrightarrow {SC} \] = (–20; 0; –20), \[\overrightarrow {SD} \] = (0; –20; –20), suy ra SA = SB = SC = SD = \[20\sqrt 2 \]. Do đó S.ABCD là hình chóp tứ giác đều.
Các vectơ \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \]có điểm đầu tại S và điểm cuối lần lượt là A′, B′, C′, D′. Ta có SA′ = SB′ = SC′ = SD′ nên S.A′B′C′D′ cũng là hình chóp tứ giác đều.
Gọi F là trọng lực tác dụng lên chậu cây và O′ là tâm của hình vuông A′B′C′D′. Ta có:
\[\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow {SA'}  + \overrightarrow {SB'}  + \overrightarrow {SC'}  + \overrightarrow {SD'}  = 4\overrightarrow {SO'} \]
Ta có \[\left| {\overrightarrow F } \right|\] = 40, suy ra \[\left| {\overrightarrow {SO'} } \right|{\rm{ = }}SO' = 10\].
Do tam giác SO′A′ vuông cân nên \[SA' = SO'.\sqrt 2  = 10\sqrt 2  = \frac{1}{2}SA\], suy ra \[\overrightarrow {{F_1}}  = \overrightarrow {SA'}  = \frac{1}{2}\overrightarrow {SA}  = (10;0; - 10)\]
Chứng minh tương tự, ta cũng có:
\[\overrightarrow {{F_2}}  = \frac{1}{2}\overrightarrow {SA} B = (0;10; - 10)\]; \[\overrightarrow {{F_3}}  = \frac{1}{2}\overrightarrow {SC}  = ( - 10;0; - 10)\]; \[\overrightarrow {{F_4}}  = \frac{1}{2}\overrightarrow {SD}  = (0; - 10; - 10)\].
 

Lời giải

a) Ta có \(\overrightarrow {AB}  = (4;6;8);\overrightarrow {AC}  = (8;10;3);\overrightarrow {BC}  = (4;4; - 5)\).

Khi đó: \(|\overrightarrow {AB} | = \sqrt {{4^2} + {6^2} + {8^2}}  = 2\sqrt {29} \);

\(|\overrightarrow {AC} | = \sqrt {{8^2} + {{10}^2} + {3^2}}  = \sqrt {173} ;{\rm{ }}\overrightarrow {BC}  = \sqrt {{4^2} + {4^2} + {{( - 5)}^2}}  = \sqrt {57} \)

b) Ta có cosBAC=ABAC|AB|AC=4.8+6.10+8.3229173=11925017BAC35°2