Trong Vật lí, ta biết rằng nếu lực \[\overrightarrow F \] tác động vào một vật và làm vật dịch chuyển theo đoạn thẳng từ M đến N, thì công A sinh bởi lực \[\overrightarrow F \] được tính bằng công thức \[A = \overrightarrow F .\overrightarrow {MN} \]. Một người tác động một lực không đổi \[\overrightarrow F = (2;3; - 1)\] vào một vật đang ở gốc tọa độ O và làm cho vật dịch chuyển thẳng từ O đến M(1;2;1). Biết lực tính bằng newton (N) và đơn vị trên mỗi trục tọa độ là mét, hãy tính công A (đơn vị: J) sinh ra bởi lực \[\overrightarrow F \] trong tình huống nêu trên.
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Lời giải
Theo giả thiết, ta có các diếm \({\rm{E}}(0;0;6),{{\rm{A}}_1}(0;1;0),{A_2}\left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right),{A_3}\left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right)\).
Suy ra \(\overline {{\rm{E}}{{\rm{A}}_1}} = (0 - 0;1 - 0;0 - 6)\) hay \(\overrightarrow {{\rm{E}}{{\rm{A}}_1}} = (0;1; - 6)\);
\(\overrightarrow {{\rm{E}}{{\rm{A}}_2}} = \left( {\frac{{\sqrt 3 }}{2} - 0; - \frac{1}{2} - 0;0 - 6} \right){\rm{ hay }}\overrightarrow {{\rm{E}}{{\rm{A}}_2}} = \left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6} \right);\)
\({\rm{ }}\overrightarrow {{\rm{E}}{{\rm{A}}_3}} = \left( { - \frac{{\sqrt 3 }}{2} - 0; - \frac{1}{2} - 0;0 - 6} \right){\rm{ hay }}\overrightarrow {{\rm{E}}{{\rm{A}}_3}} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6} \right).\)
Vî vậy, tồn tại hằng số \({\rm{c}} \ne 0\) sao cho:
\(\overrightarrow {{F_1}} = \overrightarrow {E{A_1}} = (0;c; - 6c);\overrightarrow {{F_2}} = \overrightarrow {E{A_2}} = \left( {\frac{{\sqrt 3 }}{2}c; - \frac{1}{2}c; - 6c} \right);\overrightarrow {{F_3}} = c\overrightarrow {E{A_3}} = \left( { - \frac{{\sqrt 3 }}{2}c; - \frac{1}{2}c; - 6c} \right).\)
Suy ra \({\vec F_1} + {\vec F_2} + {\vec F_3} = (0;0; - 18c)\).
Mặt khác, ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \vec F\), trong đó \(\vec F = (0;0; - 300)\) là trọng lực tác dụng lên máy quay. Suy ra \(18{\rm{c}} = - 300\), tức là \({\rm{c}} = \frac{{50}}{3}\).
Vậy: \({\vec F_1} = \left( {0;\frac{{50}}{3}; - 100} \right);\overrightarrow {{F_2}} = \left( {\frac{{25\sqrt 3 }}{3};\frac{{ - 25}}{3}; - 100} \right);{\vec F_3} = \left( {\frac{{ - 25\sqrt 3 }}{3};\frac{{ - 25}}{3}; - 100} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





