Gọi \(S\) là tập hợp tất cả các giá trị dương của tham số \(m\) để giá trị nhỏ nhất của hàm số \(y = f\left( x \right) = 4{x^2} - 4mx + {m^2} - 2m\) trên đoạn \(\left[ { - 2;\,0} \right]\) bằng \(3\). Tổng \(T\) các phần tử của \(S\) là
A. \(T = 3\).
B. \(T = \frac{1}{2}\).
C. \(T = \frac{9}{2}\).
D. \(T = - \frac{3}{2}\).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có đỉnh \(I\left( {\frac{m}{2};\, - 2m} \right)\).
Do \(m > 0\) nên \(\frac{m}{2} > 0\). Khi đó hoành độ đỉnh \({x_I} \notin \left[ { - 2;\,0} \right]\).
Ta có bảng biến thiên:
![Gọi S là tập hợp tất cả các giá trị dương của tham số m để giá trị nhỏ nhất của hàm số y = f ( x ) = 4 x 2 − 4 m x + m 2 − 2 m trên đoạn [ − 2 ; 0 ] bằng 3 . Tổng T các phần tử của S là (ảnh 1)](https://video.vietjack.com/upload2/images/1753876628/1753876696-image6.png)
Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;\,0} \right]\) là \(y\left( 0 \right) = 3\) tại \(x = 0\).
Ta có \(y\left( 0 \right) = {m^2} - 2m = 3 \Leftrightarrow \left[ \begin{array}{l}{m_1} = 3\\{m_2} = - 1 < 0\end{array} \right.\)\( \Rightarrow S = \left\{ 3 \right\}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi giá vé bán của nhà hát là \(x\) (\(0 < x < 40\)).
Khi đó số tiền giảm giá vé so với giá cũ 40 nghìn đồng là \(\left( {40 - x} \right)\) nghìn đồng.
Số người đến nhà hát tăng thêm mỗi ngày: \(\frac{{40 - x}}{{10}} \cdot 100 = 10\left( {40 - x} \right) = 400 - 10x\).
Số người đến nhà hát mỗi ngày: \(300 + 400 - 10x = 700 - 10x\).
Doanh thu từ tiền bán vé của nhà hát bằng \(f\left( x \right) = x\left( {700 - 10x} \right) = - 10{x^2} + 700x\).
Hàm số \(f\left( x \right)\) là hàm số bậc hai, đạt giá trị lớn nhất tại \(x = - \frac{b}{{2a}} = - \frac{{700}}{{2 \cdot \left( { - 10} \right)}} = 35\).
Do đó để doanh thu từ tiền bán vé là lớn nhất thì giá vé của nhà hát là \(A = 35\) .
Giá trị biểu thức \({A^2} + 2025 = {35^2} + 2025 = 3250\).
Đáp án: 3250.
Lời giải
Lời giải
a) Đúng. Vì bề lõm của parabol quay lên nên \(a > 0\).
b) Sai. Khi \(x = 0\) thì \(y = - 1 \Rightarrow c = - 1 < 0\).
c) Sai. Khi \(x = 1\) thì \(y = - 2 \Rightarrow a + b + c = - 2\).
Khi \(x = 2\) thì \(y = 1 \Rightarrow 4a + 2b + c = 1\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{c = - 1}\\{a + b + c = - 2}\\{4a + 2b + c = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 3}\\{c = - 1}\end{array}} \right.\).
Suy ra: \(a - 2b + c = 7\).
d) Đúng. Từ câu c), suy ra \(\left( P \right):y = 2{x^2} - 3x - 1\).
Phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\):
\(2{x^2} - 3x - 1 = x + 5 \Leftrightarrow 2{x^2} - 4x - 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = 3}\end{array}} \right.\).
Vậy đường thẳng \(\left( d \right):y = x + 5\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



