Câu hỏi:

30/07/2025 8 Lưu

Một nhà hát có sức chứa 800 người. Với giá vé 40 nghìn đồng trung bình sẽ có 300 người đến nhà hát mỗi ngày. Để tăng doanh thu, nhà hát đã khảo sát thị trường và thấy rằng nếu giá vé cứ giảm 10 nghìn đồng sẽ có thêm 100 người đến mỗi ngày. Gọi \(A\) nghìn đồng là giá vé để doanh thu từ tiền bán vé của nhà hát là lớn nhất. Tính giá trị của biểu thức \({A^2} + 2025\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi giá vé bán của nhà hát là \(x\) (\(0 < x < 40\)).

Khi đó số tiền giảm giá vé so với giá cũ 40 nghìn đồng là \(\left( {40 - x} \right)\) nghìn đồng.

Số người đến nhà hát tăng thêm mỗi ngày: \(\frac{{40 - x}}{{10}} \cdot 100 = 10\left( {40 - x} \right) = 400 - 10x\).

Số người đến nhà hát mỗi ngày: \(300 + 400 - 10x = 700 - 10x\).

Doanh thu từ tiền bán vé của nhà hát bằng \(f\left( x \right) = x\left( {700 - 10x} \right) = - 10{x^2} + 700x\).

Hàm số \(f\left( x \right)\) là hàm số bậc hai, đạt giá trị lớn nhất tại \(x = - \frac{b}{{2a}} = - \frac{{700}}{{2 \cdot \left( { - 10} \right)}} = 35\).

Do đó để doanh thu từ tiền bán vé là lớn nhất thì giá vé của nhà hát là \(A = 35\) .

Giá trị biểu thức \({A^2} + 2025 = {35^2} + 2025 = 3250\).

Đáp án: 3250.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng. Trục đối xứng của đồ thị là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Sai. Ta có \(x = 2 \Rightarrow y\left( 2 \right) = - 1\). Do đó \(I\left( {2; - 1} \right)\).

c) Sai. Giá trị nhỏ nhất của hàm số là \(y\left( 2 \right) = - 1\).

d) Đúng. Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow A\left( {1;0} \right)}\\{x = 3 \Rightarrow B\left( {3;0} \right)}\end{array}} \right.\).

Cho  parabol   y = x 2 − 4 x + 3  . a) Trục đối xứng của đồ thị hàm số là đường thẳng   x = 2  .  b) Tọa độ đỉnh của parabol là   I ( 2 ; − 3 )  .  c) Giá trị nhỏ nhất của hàm số là   − 2  .  d) Parabol cắt trục   O x   tại hai điểm   A , B  . Khi đó diện tích tam giác   I A B   bằng   1  . (ảnh 1)

Ta có \({S_{\Delta IAB}} = \frac{1}{2}d\left( {I,AB} \right) \cdot AB = \frac{1}{2}d\left( {I,Ox} \right) \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Câu 2

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị có:

\[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có \[a = 1 > 0\] nên \[\left( P \right)\] có bề lõm hướng lên (loại hình \[2\]).

\[\left( P \right)\] có đỉnh \[I\] có \[{x_I} = 1\] (loại hình \[1\] và \[3\]).

Vậy \[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có đồ thị là hình \[4\].

Câu 3

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu

\({v_0}\left( {{\rm{m/s}}} \right)\) theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ \(Oxy\) sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là \(\left( {0;{y_0}} \right)\), \({y_0}\) là độ cao của quả bóng so với mặt sân. Gọi \(\alpha \) là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\).

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 1)Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 2)

Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).

a) Quỹ đạo chuyển động của quả bóng là \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).

b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).

c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).

d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP