Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là \(3,2\,{\rm{m}}\). Tại vị trí trên cổng vòm hoa có độ cao \(2\,{\rm{m}}\) so với mặt đất người ta thả một sợi dây chạm đất cách chân \(A\) của cổng vòm hoa một đoạn \(1\,{\rm{m}}\) (như hình vẽ). Tính chiều cao của cổng vòm hoa (theo đơn vị mét và làm tròn kết quả đến hàng phần trăm).

Quảng cáo
Trả lời:
Lời giải
Chọn hệ trục tọa độ \(Oxy\) như hình vẽ.

Khi đó đường parabol \(\left( P \right)\) có phương trình dạng \(y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) sẽ đi qua ba điểm có tọa độ là \(\left( { - 1,6;0} \right)\), \(\left( {1,6;0} \right)\) và \(\left( { - 0,6;2} \right)\).
Ta có hệ phương trình \(\left\{ \begin{array}{l}0 = a \cdot {\left( { - 1,6} \right)^2} + b \cdot \left( { - 1,6} \right) + c\\0 = a \cdot {\left( {1,6} \right)^2} + b \cdot \left( {1,6} \right) + c\\2 = a \cdot {\left( { - 0,6} \right)^2} + b \cdot \left( { - 0,6} \right) + c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{{10}}{{11}}\\b = 0\\c = \frac{{128}}{{55}}\end{array} \right.\).
Suy ra phương trình đường parabol \(\left( P \right)\) là \(y = - \frac{{10}}{{11}}{x^2} + \frac{{128}}{{55}}\).
Giao điểm của \(\left( P \right)\) với trục \(Oy\) là đỉnh \(I\left( {0;\frac{{128}}{{55}}} \right)\).
Vậy chiều cao của cái cổng là \(OI = \frac{{128}}{{55}} \approx 2,33\,\,\left( {\rm{m}} \right)\).
Đáp án: \(2,33\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi giá vé bán của nhà hát là \(x\) (\(0 < x < 40\)).
Khi đó số tiền giảm giá vé so với giá cũ 40 nghìn đồng là \(\left( {40 - x} \right)\) nghìn đồng.
Số người đến nhà hát tăng thêm mỗi ngày: \(\frac{{40 - x}}{{10}} \cdot 100 = 10\left( {40 - x} \right) = 400 - 10x\).
Số người đến nhà hát mỗi ngày: \(300 + 400 - 10x = 700 - 10x\).
Doanh thu từ tiền bán vé của nhà hát bằng \(f\left( x \right) = x\left( {700 - 10x} \right) = - 10{x^2} + 700x\).
Hàm số \(f\left( x \right)\) là hàm số bậc hai, đạt giá trị lớn nhất tại \(x = - \frac{b}{{2a}} = - \frac{{700}}{{2 \cdot \left( { - 10} \right)}} = 35\).
Do đó để doanh thu từ tiền bán vé là lớn nhất thì giá vé của nhà hát là \(A = 35\) .
Giá trị biểu thức \({A^2} + 2025 = {35^2} + 2025 = 3250\).
Đáp án: 3250.
Lời giải
Lời giải
a) Đúng. Vì bề lõm của parabol quay lên nên \(a > 0\).
b) Sai. Khi \(x = 0\) thì \(y = - 1 \Rightarrow c = - 1 < 0\).
c) Sai. Khi \(x = 1\) thì \(y = - 2 \Rightarrow a + b + c = - 2\).
Khi \(x = 2\) thì \(y = 1 \Rightarrow 4a + 2b + c = 1\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{c = - 1}\\{a + b + c = - 2}\\{4a + 2b + c = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 3}\\{c = - 1}\end{array}} \right.\).
Suy ra: \(a - 2b + c = 7\).
d) Đúng. Từ câu c), suy ra \(\left( P \right):y = 2{x^2} - 3x - 1\).
Phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\):
\(2{x^2} - 3x - 1 = x + 5 \Leftrightarrow 2{x^2} - 4x - 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = 3}\end{array}} \right.\).
Vậy đường thẳng \(\left( d \right):y = x + 5\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(T = 3\).
B. \(T = \frac{1}{2}\).
C. \(T = \frac{9}{2}\).
D. \(T = - \frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


