Câu hỏi:

30/07/2025 9 Lưu

Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là \(3,2\,{\rm{m}}\). Tại vị trí trên cổng vòm hoa có độ cao \(2\,{\rm{m}}\) so với mặt đất người ta thả một sợi dây chạm đất cách chân \(A\) của cổng vòm hoa một đoạn \(1\,{\rm{m}}\) (như hình vẽ). Tính chiều cao của cổng vòm hoa (theo đơn vị mét và làm tròn kết quả đến hàng phần trăm).

Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là   3 , 2 m  . Tại vị trí trên cổng vòm hoa có độ cao   2 m   so với mặt đất người ta thả một sợi dây chạm đất cách chân   A   của cổng vòm hoa một đoạn   1 m   (như hình vẽ). Tính chiều cao của cổng vòm hoa (theo đơn vị mét và làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn hệ trục tọa độ \(Oxy\) như hình vẽ.

Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là   3 , 2 m  . Tại vị trí trên cổng vòm hoa có độ cao   2 m   so với mặt đất người ta thả một sợi dây chạm đất cách chân   A   của cổng vòm hoa một đoạn   1 m   (như hình vẽ). Tính chiều cao của cổng vòm hoa (theo đơn vị mét và làm tròn kết quả đến hàng phần trăm). (ảnh 2)

Khi đó đường parabol \(\left( P \right)\) có phương trình dạng \(y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) sẽ đi qua ba điểm có tọa độ là \(\left( { - 1,6;0} \right)\), \(\left( {1,6;0} \right)\) và \(\left( { - 0,6;2} \right)\).

Ta có hệ phương trình \(\left\{ \begin{array}{l}0 = a \cdot {\left( { - 1,6} \right)^2} + b \cdot \left( { - 1,6} \right) + c\\0 = a \cdot {\left( {1,6} \right)^2} + b \cdot \left( {1,6} \right) + c\\2 = a \cdot {\left( { - 0,6} \right)^2} + b \cdot \left( { - 0,6} \right) + c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{{10}}{{11}}\\b = 0\\c = \frac{{128}}{{55}}\end{array} \right.\).

Suy ra phương trình đường parabol \(\left( P \right)\) là \(y = - \frac{{10}}{{11}}{x^2} + \frac{{128}}{{55}}\).

Giao điểm của \(\left( P \right)\) với trục \(Oy\) là đỉnh \(I\left( {0;\frac{{128}}{{55}}} \right)\).

Vậy chiều cao của cái cổng là \(OI = \frac{{128}}{{55}} \approx 2,33\,\,\left( {\rm{m}} \right)\).

Đáp án: \(2,33\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng. Trục đối xứng của đồ thị là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Sai. Ta có \(x = 2 \Rightarrow y\left( 2 \right) = - 1\). Do đó \(I\left( {2; - 1} \right)\).

c) Sai. Giá trị nhỏ nhất của hàm số là \(y\left( 2 \right) = - 1\).

d) Đúng. Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow A\left( {1;0} \right)}\\{x = 3 \Rightarrow B\left( {3;0} \right)}\end{array}} \right.\).

Cho  parabol   y = x 2 − 4 x + 3  . a) Trục đối xứng của đồ thị hàm số là đường thẳng   x = 2  .  b) Tọa độ đỉnh của parabol là   I ( 2 ; − 3 )  .  c) Giá trị nhỏ nhất của hàm số là   − 2  .  d) Parabol cắt trục   O x   tại hai điểm   A , B  . Khi đó diện tích tam giác   I A B   bằng   1  . (ảnh 1)

Ta có \({S_{\Delta IAB}} = \frac{1}{2}d\left( {I,AB} \right) \cdot AB = \frac{1}{2}d\left( {I,Ox} \right) \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Lời giải

Lời giải

Vật chuyển động có công thức vận tốc dạng hàm số bậc hai.

Ta có \(t = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot \frac{1}{2}}} = 4 \Rightarrow {v_{\min }} = \frac{1}{2} \cdot {4^2} - 4 \cdot 4 + 10 = 2\,({\rm{m/s)}}\).

Vậy vận tốc của vật đạt giá trị nhỏ nhất bằng \[2\,{\rm{m/s}}\].

Đáp án: 2.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu

\({v_0}\left( {{\rm{m/s}}} \right)\) theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ \(Oxy\) sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là \(\left( {0;{y_0}} \right)\), \({y_0}\) là độ cao của quả bóng so với mặt sân. Gọi \(\alpha \) là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\).

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 1)Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 2)

Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).

a) Quỹ đạo chuyển động của quả bóng là \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).

b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).

c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).

d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP