Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu
\({v_0}\left( {{\rm{m/s}}} \right)\) theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ \(Oxy\) sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là \(\left( {0;{y_0}} \right)\), \({y_0}\) là độ cao của quả bóng so với mặt sân. Gọi \(\alpha \) là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\).
Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).
a) Quỹ đạo chuyển động của quả bóng là \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).
b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).
c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).
d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).
Quảng cáo
Trả lời:
Lời giải
a) Đúng. Thay \({v_0} = 7,{y_0} = 0,8\) vào công thức \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\)
ta được \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).
b) Sai. Với \(\alpha = 30^\circ \), ta có \(y = \frac{{ - 0,4}}{3} \cdot {x^2} + \frac{{\sqrt 3 }}{3} \cdot x + 0,8\).
Thay \(x = 2\) vào ta được \(y \approx 1,42\left( {\rm{m}} \right)\).
c) Sai. Với \(\alpha = 60^\circ \), ta có \(y = - 0,4 \cdot {x^2} + \sqrt 3 \cdot x + 0,8\).
Suy ra \({y_{\max }} = \frac{{107}}{{40}} = 2,675\left( {\rm{m}} \right)\) khi \(x = \frac{{5\sqrt 3 }}{4}\).
d) Đúng.
Với \(\alpha = 60^\circ \), ta có \(y = - 0,4 \cdot {x^2} + \sqrt 3 \cdot x + 0,8\).
Quả bóng chạm đất thì \( - 0,4 \cdot {x^2} + \sqrt 3 \cdot x + 0,8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{\sqrt {107} + 5\sqrt 3 }}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x = \frac{{ - \sqrt {107} + 5\sqrt 3 }}{4}\left( {loai} \right)}\end{array}} \right.\).
Gọi \(A,B\) lần lượt là vị trí bóng tiếp xúc với tay cầu thủ và vị trí bóng chạm mặt sân.
Ta có \(OA = {y_0} = 0,8\); \(OB = \frac{{\sqrt {107} + 5\sqrt 3 }}{4}\).
Vị trí quả bóng rơi xuống sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là: \(AB = \sqrt {O{A^2} + O{B^2}} \approx 4,818\,\left( {\rm{m}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng. Trục đối xứng của đồ thị là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).
b) Sai. Ta có \(x = 2 \Rightarrow y\left( 2 \right) = - 1\). Do đó \(I\left( {2; - 1} \right)\).
c) Sai. Giá trị nhỏ nhất của hàm số là \(y\left( 2 \right) = - 1\).
d) Đúng. Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow A\left( {1;0} \right)}\\{x = 3 \Rightarrow B\left( {3;0} \right)}\end{array}} \right.\).
Ta có \({S_{\Delta IAB}} = \frac{1}{2}d\left( {I,AB} \right) \cdot AB = \frac{1}{2}d\left( {I,Ox} \right) \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị có:
\[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có \[a = 1 > 0\] nên \[\left( P \right)\] có bề lõm hướng lên (loại hình \[2\]).
\[\left( P \right)\] có đỉnh \[I\] có \[{x_I} = 1\] (loại hình \[1\] và \[3\]).
Vậy \[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có đồ thị là hình \[4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.