Câu hỏi:

30/07/2025 22 Lưu

Cho tam thức bậc hai \(f(x)\) có bảng xét dấu như sau:

Cho tam thức bậc hai  f ( x )   có bảng xét dấu như sau:   Trong các tập hợp sau, tập hợp nào là tập nghiệm bất phương trình   f ( x ) > 0  ? (ảnh 1)

Trong các tập hợp sau, tập hợp nào là tập nghiệm bất phương trình \(f\left( x \right) > 0\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Từ bảng xét dấu ta có \[f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\].

Vậy tập nghiệm của bất phương trình là \[S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {x \ge 0} \right)\) (nghìn đồng) là số tiền tăng lên cho mỗi ki-lô-gam rau.

a) Đúng. Số tiền bán mỗi một ki-lô-gam rau sau khi tăng giá là \(x + 30\) (nghìn đồng).

b) Sai. Số ki-lô-gam rau thừa là \(20x\,\,\left( {x \le 50} \right)\).

Tổng số ki-lô-gam rau bán được là \(1000 - 20x\) (kg).

c) Đúng. Tổng số tiền thu được là

\(T = \left( {1000 - 20x} \right)\left( {x + 30} \right) + 20x.2 = - 20{x^2} + 440x + 30000\) (nghìn đồng).

d) Đúng. Để số tiền không nhỏ hơn 31140 nghìn đồng thì \( - 20{x^2} + 440x + 30000 \ge 31140\)\( \Leftrightarrow - 20{x^2} + 440x - 1140 \ge 0\)\( \Leftrightarrow 3 \le x \le 19\). Suy ra \(x \in \left[ {3;19} \right]\).

Lời giải

Lời giải

Giả sử vị trí ban đầu của chú thỏ đen là \(s = 0\,\,{\rm{(m)}}\) và thời điểm ban đầu là \(t = 0\) (giây).

Quãng đường của chú thỏ trắng chạy được tại thời điểm \(t\) là \(f\left( t \right) = 100 + 3t\,\,{\rm{(m)}}\).

Để chú thỏ đen chạy trước chú thỏ trắng thì \(s\left( t \right) > f\left( t \right)\)

hay \(8t + 5{t^2} > 100 + 3t \Rightarrow 5{t^2} + 5t - 100 > 0 \Rightarrow t > 4 \Rightarrow t \in \left( {4; + \infty } \right)\) (vì \(\left. {t > 0} \right)\).

Vậy tại những thời điểm \(t \in \left( {4; + \infty } \right)\) thì chú thỏ đen chạy trước chú thỏ trắng.

Khi đó, \(a = 4\).

Đáp án: 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP