Câu hỏi:

30/07/2025 16 Lưu

Tổng chi phí \(P\) (đơn vị: nghìn đồng) để sản xuất \(x\) sản phẩm được cho bởi biểu thức \(P = {x^2} + 30x + 3300\); giá bán một sản phẩm là 170 nghìn đồng. Gọi \(a,\,b\) lần lượt là số sản phẩm tối thiểu và tối đa mà nhà sản xuất cần sản xuất để không bị lỗ nếu các sản phẩm được bán hết. Tính \(S = a + b\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Khi bán hết \(x\) sản phẩm thì số tiền thu được là: \(170x\) (nghìn đồng).

Điều kiện để nhà sản xuất không bị lỗ là

\(170x \ge {x^2} + 30x + 3300 \Leftrightarrow {x^2} - 140x + 3300 \le 0\).

Xét \({x^2} - 140x + 3300 = 0 \Rightarrow x = 30\) hoặc \(x = 110\).

Bảng xét dấu:

Tổng chi phí  P   (đơn vị: nghìn đồng) để sản xuất   x   sản phẩm được cho bởi biểu thức   P = x 2 + 30 x + 3300  ; giá bán một sản phẩm là 170 nghìn đồng. Gọi   a , b   lần lượt là số sản phẩm tối thiểu và tối đa mà nhà sản xuất cần sản xuất để không bị lỗ nếu các sản phẩm được bán hết. Tính   S = a + b  . (ảnh 1)

Ta có \({x^2} - 140x + 3300 \le 0 \Leftrightarrow x \in \left[ {30\,;110} \right]\).

Vậy nếu nhà sản xuất làm ra từ 30 đến 110 sản phẩm thì họ sẽ không bị lỗ.

Khi đó, \(a = 30;\,b = 110\). Vậy \(S = a + b = 30 + 110 = 140\).

Đáp án: 140.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {x \ge 0} \right)\) (nghìn đồng) là số tiền tăng lên cho mỗi ki-lô-gam rau.

a) Đúng. Số tiền bán mỗi một ki-lô-gam rau sau khi tăng giá là \(x + 30\) (nghìn đồng).

b) Sai. Số ki-lô-gam rau thừa là \(20x\,\,\left( {x \le 50} \right)\).

Tổng số ki-lô-gam rau bán được là \(1000 - 20x\) (kg).

c) Đúng. Tổng số tiền thu được là

\(T = \left( {1000 - 20x} \right)\left( {x + 30} \right) + 20x.2 = - 20{x^2} + 440x + 30000\) (nghìn đồng).

d) Đúng. Để số tiền không nhỏ hơn 31140 nghìn đồng thì \( - 20{x^2} + 440x + 30000 \ge 31140\)\( \Leftrightarrow - 20{x^2} + 440x - 1140 \ge 0\)\( \Leftrightarrow 3 \le x \le 19\). Suy ra \(x \in \left[ {3;19} \right]\).

Lời giải

Lời giải

Hàm số \(y = \frac{{2024x + 2025}}{{\sqrt {m{x^2} + 2mx + 9} }}\) có tập xác định \(\mathbb{R}\) \( \Leftrightarrow m{x^2} + 2mx + 9 > 0,\forall x \in {\mathbb{R}^{}}(1)\).

+ \(m = 0\) thoả mãn \((1)\).

+ \(m \ne 0\), \((1) \Leftrightarrow \)parabol \(y = m{x^2} + 2mx + 9 > 0\) nằm hoàn toàn phía trên trục hoành \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\ - \frac{\Delta }{{4m}} > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = {m^2} - 9m < 0\end{array} \right.\)\( \Leftrightarrow 0 < m < 9\).

Kết hợp 2 trường hợp ta được \( \Leftrightarrow 0 \le m < 9\).

Vậy có 9 giá trị nguyên của \(m\) thoả mãn.

Đáp án: 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP