Câu hỏi:

30/07/2025 11 Lưu

Cho cot \(\alpha = 2\). Khi đó, ta có \(B = \frac{{\sin \alpha + 2\cos \alpha }}{{{{\sin }^3}\alpha - {{\cos }^3}\alpha }} = - \frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức \(a - b\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Vì \(\cot \alpha = 2 \Rightarrow \sin \alpha \ne 0\). Chia cả tử và mẫu của B cho \({\sin ^3}\alpha \) ta được:

\(B = \frac{{\left( {\sin \alpha + 2\cos \alpha } \right)\frac{1}{{{{\sin }^3}\alpha }}}}{{\left( {{{\sin }^3}\alpha - {{\cos }^3}\alpha } \right)\frac{1}{{{{\sin }^3}\alpha }}}} = \frac{{\frac{1}{{{{\sin }^2}\alpha }} + 2\cot \alpha \cdot \frac{1}{{{{\sin }^2}\alpha }}}}{{1 - {{\cot }^3}\alpha }}\)\(\)

\( = \frac{{1 + {{\cot }^2}\alpha + 2\cot \alpha \left( {1 + {{\cot }^2}\alpha } \right)}}{{1 - {{\cot }^3}\alpha }} = \frac{{2{{\cot }^3}\alpha + {{\cot }^2}\alpha + 2\cot \alpha + 1}}{{1 - {{\cot }^3}\alpha }} = - \frac{{25}}{7} = - \frac{a}{b}\).

Suy ra \(\frac{a}{b} = \frac{{25}}{7}\) và \(a = 25,b = 7\). Vậy \(a - b = 25 - 7 = 18\).

Đáp án: 18.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Vì \(\tan \alpha = 1 \Rightarrow \cos \alpha \ne 0\). Chia cả tử và mẫu cho \({\cos ^2}\alpha \) ta được:

\(B = \frac{{\left( {{{\sin }^2}\alpha + 1} \right)\frac{1}{{{{\cos }^2}\alpha }}}}{{\left( {2{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\frac{1}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha + \frac{1}{{{{\cos }^2}\alpha }}}}{{2 - {{\tan }^2}\alpha }} = \frac{{{{\tan }^2}\alpha + {{\tan }^2}\alpha + 1}}{{2 - {{\tan }^2}\alpha }} = 3\).

Đáp án: 3.

Lời giải

Lời giải

Vì \(\cot \alpha = - \sqrt 2 \Rightarrow \sin \alpha \ne 0\). Chia cả tử và mẫu của biểu thức \(P\) cho \(\sin \alpha \) ta được:

\(P = \frac{{\frac{{2\sin \alpha - \sqrt 2 \cos \alpha }}{{\sin \alpha }}}}{{\frac{{4\sin \alpha + 3\sqrt 2 \cos \alpha }}{{\sin \alpha }}}} = \frac{{2 - \sqrt 2 \cot \alpha }}{{4 + 3\sqrt 2 \cot \alpha }} = \frac{{2 - \sqrt 2 \cdot \left( { - \sqrt 2 } \right)}}{{4 + 3\sqrt 2 \cdot \left( { - \sqrt 2 } \right)}} = - 2 = \frac{m}{n} \Rightarrow \left\{ \begin{array}{l}m = - 2\\n = 1\end{array} \right.\).

Khi đó \(A = {\left( { - 2} \right)^2} + {1^2} = 5\).

Đáp án: \(5\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP