Câu hỏi:

30/07/2025 66 Lưu

Tính giá trị của biểu thức: \(F = 1 - 2{\sin ^2}55^\circ + 4{\cos ^2}60^\circ - 2{\sin ^2}35^\circ + \tan 55^\circ \tan 35^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

\(F = 1 - 2{\sin ^2}55^\circ + 4{\cos ^2}60^\circ - 2{\sin ^2}35^\circ + \tan 55^\circ \tan 35^\circ \)\[ = 1 - 2{\sin ^2}\left( {90^\circ - 35^\circ } \right) + 4{\cos ^2}60^\circ - 2{\sin ^2}35^\circ + \tan \left( {90^\circ - 35^\circ } \right)\tan 35^\circ \]\( = 1 - 2{\cos ^2}35^\circ + 4{\cos ^2}60^\circ - 2{\sin ^2}35^\circ + \cot 35^\circ \cdot \tan 55^\circ \)\( = 1 - 2\left( {{{\sin }^2}35^\circ + {{\cos }^2}35^\circ } \right) + 4{\cos ^2}60^\circ + \tan 35^\circ \cot 35^\circ = 1 - 2 \cdot 1 + 4 \cdot {\left( {\frac{1}{2}} \right)^2} + 1 = 1\).

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \alpha - \cot \alpha = 3 \Leftrightarrow {\left( {\tan \alpha - \cot \alpha } \right)^2} = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2\tan \alpha \cdot \cot \alpha = 9\)

\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2 = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = 11\).

Lời giải

Lời giải

Vì \(\tan \alpha = 1 \Rightarrow \cos \alpha \ne 0\). Chia cả tử và mẫu cho \({\cos ^2}\alpha \) ta được:

\(B = \frac{{\left( {{{\sin }^2}\alpha + 1} \right)\frac{1}{{{{\cos }^2}\alpha }}}}{{\left( {2{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\frac{1}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha + \frac{1}{{{{\cos }^2}\alpha }}}}{{2 - {{\tan }^2}\alpha }} = \frac{{{{\tan }^2}\alpha + {{\tan }^2}\alpha + 1}}{{2 - {{\tan }^2}\alpha }} = 3\).

Đáp án: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP