Câu hỏi:

30/07/2025 91 Lưu

Tam giác \[ABC\] có \[BC = 12\], \[CA = 9\], \[AB = 6\]. Trên cạnh \[BC\] lấy điểm \[M\] sao cho \[BM = 8\]. Tính độ dài đoạn thẳng \[AM\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Tam giác  A B C   có   B C = 12  ,   C A = 9  ,   A B = 6  . Trên cạnh   B C   lấy điểm   M   sao cho   B M = 8  . Tính độ dài đoạn thẳng   A M  . (ảnh 1)

Ta có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2 \cdot AB \cdot BC}} = \frac{{{6^2} + {{12}^2} - {9^2}}}{{2 \cdot 6 \cdot 12}} = \frac{{11}}{{16}}\).

Khi đó, \[AM = \sqrt {A{B^2} + B{M^2} - 2AB \cdot BM \cdot \cos B} = \sqrt {{6^2} + {8^2} - 2 \cdot 6 \cdot 8 \cdot \frac{{11}}{{16}}} = \sqrt {34} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Lời giải

Lời giải

a) Đúng. Ta có \(\widehat {ADC} = 90^\circ - 45^\circ = 45^\circ \).

b) Đúng. Ta có \(\cos \widehat {CAB} = \frac{{AC}}{{AB}} \Rightarrow AB = \frac{{10}}{{\cos 10^\circ }} \approx 10,15\,\,{\rm{(m)}}\).

c) Sai. Ta có \(\cos \widehat {CAD} = \frac{{AC}}{{AD}} \Rightarrow AD = \frac{{10}}{{\cos 45^\circ }} = 10\sqrt 2 \,\,{\rm{(m)}}\)

Khi đó, \({S_{ACD}} = \frac{1}{2}AD \cdot AC \cdot \sin 45^\circ = \frac{1}{2} \cdot 10\sqrt 2 \cdot 10 \cdot \frac{{\sqrt 2 }}{2} = 50\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

d) Đúng. Ta có \({S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin 55^\circ \approx \frac{1}{2} \cdot 10\sqrt 2 \cdot 10,15 \cdot \sin 55^\circ \approx 58,79\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Mặt khác \({S_{ABD}} = \frac{1}{2}AC \cdot BD \Rightarrow BD = \frac{{2{S_{ABD}}}}{{AC}} \approx 11,76\,\,{\rm{(m)}}\).