Câu hỏi:

30/07/2025 17 Lưu

Hai bạn An và Bình cùng xuất phát từ điểm \[P\], đi theo hai hướng khác nhau và tạo với nhau một góc \(40^\circ \) để đến đích là điểm \[D\] với \[\widehat {PAD} = 100^\circ \]. Biết rằng An và Bình dừng lại để ăn trưa lần lượt tại \[A\] và \[B\] (như hình vẽ minh hoạ).

Hai bạn An và Bình cùng xuất phát từ điểm  P  , đi theo hai hướng khác nhau và tạo với nhau một góc   40 ∘   để đến đích là điểm   D   với   ˆ P A D = 100 ∘  . Biết rằng An và Bình dừng lại để ăn trưa lần lượt tại   A   và   B   (như hình vẽ minh hoạ).   Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)? (ảnh 1)

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Xét tam giác \[PAD\] có

\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}} = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ } \approx 9,02\],

và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].

Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ - 19^\circ = 21^\circ \],

và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).

Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.

Đáp án: \(3,53\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tổng quãng đường mà phương tiện di chuyển từ \(A\) qua \(C\) đến \(B\) là: \(70 + 100 = 170\,{\rm{km}}\).

Thể tích nhiên liệu bị tiêu hao là: \(170:20 = 8,5\) lít.

Tỉnh  A   và   B   bị ngăn cách nhau bởi một ngọn núi. Để đi từ tỉnh   A   đến tỉnh   B  , người ta đi theo lộ trình từ tỉnh   A   qua tỉnh   C  , rồi đến tỉnh   B  . Biết rằng lộ trình từ   A   đến   C   dài 70 km, từ   C   đến   B   dài 100 km, và hai con đường tạo với nhau góc   60 ∘  . Cứ mỗi 20 km quãng đường thì phương tiện tiêu hao 1 lít nhiên liệu. Để tiết kiệm nhiên liệu, người ta làm một đường hầm xuyên núi để đi từ tỉnh   A   đến tỉnh   B  . Hỏi nếu đi theo đường hầm thì phương tiện tiết kiệm được bao nhiêu lít nhiên liệu (làm tròn kết quả đến hàng phần trăm)? (ảnh 1)

Áp dụng định lí côsin trong tam giác \(ABC\):

\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos 60^\circ = 7900 \Rightarrow AB = 10\sqrt {79} \,\,\,{\rm{(km)}}\).

Thể tích nhiên liệu bị tiêu hao là: \(10\sqrt {79} \,:20 = \frac{{\sqrt {79} }}{2} \approx 4,44\) lít.

Thể tích nhiên liệu tiết kiệm được: \(8,5 - 4,44 = 4,06\) lít.

Đáp án: 4,06.

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP