Câu hỏi:

30/07/2025 99 Lưu

Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là \(1,2\) triệu đồng 1\({{\rm{m}}^{\rm{2}}}\).

Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là   1 , 2   triệu đồng 1  m 2  .    Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị). (ảnh 1)

Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là   1 , 2   triệu đồng 1  m 2  .    Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị). (ảnh 2)

Ta có \(B{D^2} = A{D^2} + A{B^2} - 2AD \cdot AB \cdot \cos \left( {73,07^\circ } \right) \approx 517\)\( \Rightarrow BD \approx 23\,\left( {\rm{m}} \right)\).

\[{S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin \left( {73,07^\circ } \right) \approx 158\,\left( {{{\rm{m}}^2}} \right)\].

Nửa chu vi tam giác \(BCD\) là: \(\frac{{23 + 10 + 18}}{2} = \frac{{51}}{2} = 25,5\).

\({S_{BCD}} = \sqrt {25,5.\left( {25,5 - 23} \right)\left( {25,5 - 10} \right)\left( {25,5 - 18} \right)} \approx 86\,\left( {{{\rm{m}}^2}} \right)\).

\({S_{ABCD}} = {S_{ABD}} + {S_{BCD}} \approx 244\,\left( {{{\rm{m}}^2}} \right)\).

Vậy số tiền gia đình nhà bác An nhận được khoảng \(244 \cdot 1,2 \approx 293\) triệu đồng.

Đáp án: \(293\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Lời giải

Lời giải

a) Đúng. Ta có \(\widehat {ADC} = 90^\circ - 45^\circ = 45^\circ \).

b) Đúng. Ta có \(\cos \widehat {CAB} = \frac{{AC}}{{AB}} \Rightarrow AB = \frac{{10}}{{\cos 10^\circ }} \approx 10,15\,\,{\rm{(m)}}\).

c) Sai. Ta có \(\cos \widehat {CAD} = \frac{{AC}}{{AD}} \Rightarrow AD = \frac{{10}}{{\cos 45^\circ }} = 10\sqrt 2 \,\,{\rm{(m)}}\)

Khi đó, \({S_{ACD}} = \frac{1}{2}AD \cdot AC \cdot \sin 45^\circ = \frac{1}{2} \cdot 10\sqrt 2 \cdot 10 \cdot \frac{{\sqrt 2 }}{2} = 50\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

d) Đúng. Ta có \({S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin 55^\circ \approx \frac{1}{2} \cdot 10\sqrt 2 \cdot 10,15 \cdot \sin 55^\circ \approx 58,79\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Mặt khác \({S_{ABD}} = \frac{1}{2}AC \cdot BD \Rightarrow BD = \frac{{2{S_{ABD}}}}{{AC}} \approx 11,76\,\,{\rm{(m)}}\).