Viết phương trình mặt phẳng \((Q)\) đi qua điểm \(M(1;2;3)\) và song song với mặt phẳng \((P):2x + y + z + 12 = 0\).
Viết phương trình mặt phẳng \((Q)\) đi qua điểm \(M(1;2;3)\) và song song với mặt phẳng \((P):2x + y + z + 12 = 0\).
Quảng cáo
Trả lời:
Dễ thấy điểm \(M\) không nằm trên \((P)\). Vì \((Q)//(P)\) nên \((Q)\) có vectơ pháp tuyến là \(\vec n = (2;1;1)\).
Phương trình mặt phẳng \((Q)\) đi qua \(M\) và có vectơ pháp tuyến \(\vec n\) là:
\(2(x - 1) + (y - 2) + (z - 3) = 0{\rm{ hay }}2x + y + z - 7 = 0.{\rm{ }}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng \(({\rm{P}})\).
Ta có \(\vec i = (1;0;0)\) và \(\overrightarrow {{n_Q}} = (1;2; - 3)\). Vì \({\rm{(P) // Ox }}\) và \({\rm{ (P) }} \bot ({\rm{Q}})\) nên
Mặt phẳng đi qua \({\rm{M}}(2;3; - 1)\) và nhận \(\overrightarrow {{n_P}} = (0;3;2)\) làm một vectơ pháp tuyến có phương trình là: \(3(y - 3) + 2(z + 1) = 0 \Leftrightarrow 3y + 2z - 7 = 0\).
Lời giải
Mặt phẳng \((Q)\) có vectơ pháp tuyến \(\overrightarrow {{n_Q}} = (1;3;1)\). Mặt phẳng \((P)\) đi qua A, B và vuông góc với \((Q)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} = (1;2;3)\) và \(\overrightarrow {{n_Q}} = (1;3;1)\). Do đó \((P)\) có vectơ pháp tuyến là: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\overrightarrow {{n_Q}} } \right] = ( - 7;2;1)\).
Mặt phẳng \((P)\) đi qua \(A(1;2; - 2)\) và có vectơ pháp tuyến \({\vec n_P} = ( - 7;2;1)\) nên có phương trình: \( - 7x + 2y + z - (( - 7) \cdot 1 + 2 \cdot 2 + 1 \cdot ( - 2)) = 0 \Leftrightarrow 7x - 2y - z - 5 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.