Một quả bóng được ném lên từ độ cao 24,5 m với vận tốc được tính bởi công thức v(t) = -9,8t + 19,6 (m/s)
a) Viết công thức tính độ cao của quả bóng theo thời gian t
b) Hỏi sau bao nhiều lâu kể từ khi ném lên thì quả bóng chạm đất.
Một quả bóng được ném lên từ độ cao 24,5 m với vận tốc được tính bởi công thức v(t) = -9,8t + 19,6 (m/s)
a) Viết công thức tính độ cao của quả bóng theo thời gian t
b) Hỏi sau bao nhiều lâu kể từ khi ném lên thì quả bóng chạm đất.
Quảng cáo
Trả lời:

a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Công thức chiều cao \(h(t)\) của cây sau \(t\) năm là một nguyên hàm của hàm số \({h^\prime }({\rm{t}})\).
Ta có \(\int {{h^\prime }} (t)dt = \int {(1,5t + 5)} dt = \int 1 ,5tdt + \int 5 dt = 0,75{t^2} + 5t + C\).
Suy ra \(h(t) = 0,75{t^2} + 5t + C\).
Vì cây con khi được trồng cao 12 cm nên \({\rm{h}}(0) = 12\).
Do đó \(0,75 \cdot {0^2} + 5 \cdot 0 + C = 12\), suy ra \(C = 12\).
Vậy công thức tính chiều cao của cây sau t năm là \(h(t) = 0,75{t^2} + 5t + 12\).
b) Khi cây được bán, tức là \({\rm{t}} = 6\), ta có \({\rm{h}}(6) = 0,75 \cdot {6^2} + 5 \cdot 6 + 12 = 69\).
Vậy khi được bán, cây cao 69 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.