Câu hỏi:

05/08/2025 125 Lưu

Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức \({h^\prime }(t) = 1,5t + 5\), trong đó \(h(t)({\rm{cm}})\) là chiều cao của cây khi kết thúc \(t\) (năm) (Nguồn: R. Larson and B. Edwards, Calculus 10e Cengage 2014). Cây con khi được trồng cao \(12\;{\rm{cm}}\).

a) Tìm công thức chỉ chiều cao của cây sau \(t\) năm.

b) Khi được bán, cây cao bao nhiêu centimét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Công thức chiều cao \(h(t)\) của cây sau \(t\) năm là một nguyên hàm của hàm số \({h^\prime }({\rm{t}})\).

Ta có \(\int {{h^\prime }} (t)dt = \int {(1,5t + 5)} dt = \int 1 ,5tdt + \int 5 dt = 0,75{t^2} + 5t + C\).

Suy ra \(h(t) = 0,75{t^2} + 5t + C\).

Vì cây con khi được trồng cao 12 cm nên \({\rm{h}}(0) = 12\).

Do đó \(0,75 \cdot {0^2} + 5 \cdot 0 + C = 12\), suy ra \(C = 12\).

Vậy công thức tính chiều cao của cây sau t năm là \(h(t) = 0,75{t^2} + 5t + 12\).

b) Khi cây được bán, tức là \({\rm{t}} = 6\), ta có \({\rm{h}}(6) = 0,75 \cdot {6^2} + 5 \cdot 6 + 12 = 69\).

Vậy khi được bán, cây cao 69 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).

Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.

Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.

Suy ra C = 24,5.

Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.

b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:

t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.

Lời giải

Kí hiệu v(t) là tốc độ của vật, s(t) là quãng đường vật đi được cho đến thời điểm t giây kể từ khi vật bắt đầu rơi.
Vì a(t) = v’(t) nên: \[v(t) = \int {a(t)dt} = \int {10dt = 10t + C} \].
Ta có: v(0) = 0 nên 10.0 + C = 0 hay C = 0. Vậy v(t) = 10t (m/s)
Vì v(t) = s’(t) nên: \[s(t) = \int {v(t)dt} = \int {10tdt = 5{t^2} + C} \].
Ta có: s(0) = 0 nên 5.02 + C = 0 hay C = 0. Vậy s(t) = 5t2 (m)
Vật rơi từ độ cao 20m nên \[s(t) \le 20\], suy ra \[0 \le t \le 2\].
Vậy sau khi vật rơi được t giây (\[0 \le t \le 2\]) thì vật có tốc độ v(t) = 10t (m/s) và đi được quãng đường
s(t) = 5t2 (m)