Câu hỏi:

05/08/2025 31 Lưu

Một hòn đá rơi từ móm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng. Biết tốc độ rơi của hòn đá (tính theo đơn vị \({\rm{m}}/{\rm{s}}\) ) tại thời điểm t (tính theo giây) được cho bởi công thức \({\rm{v}}({\rm{t}})\) \( = 9,8{\rm{t}}\). Quãng đường rơi được \(S\) của hòn đá tại thời điểm t được cho bởi công thức nào? Sau bao nhiêu giây thì hòn đá chạm đến mặt đất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({\rm{S}} = {\rm{S}}({\rm{t}})\) là quãng đường rơi được của hòn đá tại thời điểm \({\rm{t}}({\rm{S}}({\rm{t}})\) tính theo m , t tính theo giây).

Suy ra \({S^\prime }({\rm{t}}) = {\rm{v}}({\rm{t}})\), do đó \({\rm{S}}({\rm{t}})\) là một nguyên hàm của \(v({\rm{t}})\).

Ta có \(\int v (t)dt = \int 9 ,8tdt = 4,9{t^2} + C\). Suy ra \({\rm{S}}({\rm{t}}) = 4,9{{\rm{t}}^2} + {\rm{C}}\).

Mà hòn đá rơi từ mỏm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng tức là tại thời điểm \({\rm{t}} = 0\) thì \({\rm{S}} = 0\) hay \({\rm{S}}(0) = 0\), suy ra \({\rm{C}} = 0\).

Vậy công thức tính quãng đường rơi được \({\rm{S}}({\rm{t}})\) của hòn đá tại thời điểm t là: \(S(t) = 4,9{t^2}.\)

Khi hòn đá chạm đất thì \({\rm{S}}({\rm{t}}) = 150\). Ta có \(4,9{{\rm{t}}^2} = 150\). Suy ra \(t =  \pm \frac{{10\sqrt {15} }}{7}\).

Mà \({\rm{t}} > 0\) nên \(t = \frac{{10\sqrt {15} }}{7}\). Vậy sau \(t = \frac{{10\sqrt {15} }}{7} \approx 5,53\) giây thì hòn đá chạm đến mặt đất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).

Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.

Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.

Suy ra C = 24,5.

Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.

b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:

t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.

Lời giải

Kí hiệu v(t) là tốc độ của vật, s(t) là quãng đường vật đi được cho đến thời điểm t giây kể từ khi vật bắt đầu rơi.
Vì a(t) = v’(t) nên: \[v(t) = \int {a(t)dt} = \int {10dt = 10t + C} \].
Ta có: v(0) = 0 nên 10.0 + C = 0 hay C = 0. Vậy v(t) = 10t (m/s)
Vì v(t) = s’(t) nên: \[s(t) = \int {v(t)dt} = \int {10tdt = 5{t^2} + C} \].
Ta có: s(0) = 0 nên 5.02 + C = 0 hay C = 0. Vậy s(t) = 5t2 (m)
Vật rơi từ độ cao 20m nên \[s(t) \le 20\], suy ra \[0 \le t \le 2\].
Vậy sau khi vật rơi được t giây (\[0 \le t \le 2\]) thì vật có tốc độ v(t) = 10t (m/s) và đi được quãng đường
s(t) = 5t2 (m)