Một hòn đá rơi từ móm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng. Biết tốc độ rơi của hòn đá (tính theo đơn vị \({\rm{m}}/{\rm{s}}\) ) tại thời điểm t (tính theo giây) được cho bởi công thức \({\rm{v}}({\rm{t}})\) \( = 9,8{\rm{t}}\). Quãng đường rơi được \(S\) của hòn đá tại thời điểm t được cho bởi công thức nào? Sau bao nhiêu giây thì hòn đá chạm đến mặt đất?
Quảng cáo
Trả lời:
Gọi \({\rm{S}} = {\rm{S}}({\rm{t}})\) là quãng đường rơi được của hòn đá tại thời điểm \({\rm{t}}({\rm{S}}({\rm{t}})\) tính theo m , t tính theo giây).
Suy ra \({S^\prime }({\rm{t}}) = {\rm{v}}({\rm{t}})\), do đó \({\rm{S}}({\rm{t}})\) là một nguyên hàm của \(v({\rm{t}})\).
Ta có \(\int v (t)dt = \int 9 ,8tdt = 4,9{t^2} + C\). Suy ra \({\rm{S}}({\rm{t}}) = 4,9{{\rm{t}}^2} + {\rm{C}}\).
Mà hòn đá rơi từ mỏm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng tức là tại thời điểm \({\rm{t}} = 0\) thì \({\rm{S}} = 0\) hay \({\rm{S}}(0) = 0\), suy ra \({\rm{C}} = 0\).
Vậy công thức tính quãng đường rơi được \({\rm{S}}({\rm{t}})\) của hòn đá tại thời điểm t là: \(S(t) = 4,9{t^2}.\)
Khi hòn đá chạm đất thì \({\rm{S}}({\rm{t}}) = 150\). Ta có \(4,9{{\rm{t}}^2} = 150\). Suy ra \(t = \pm \frac{{10\sqrt {15} }}{7}\).
Mà \({\rm{t}} > 0\) nên \(t = \frac{{10\sqrt {15} }}{7}\). Vậy sau \(t = \frac{{10\sqrt {15} }}{7} \approx 5,53\) giây thì hòn đá chạm đến mặt đất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Công thức chiều cao \(h(t)\) của cây sau \(t\) năm là một nguyên hàm của hàm số \({h^\prime }({\rm{t}})\).
Ta có \(\int {{h^\prime }} (t)dt = \int {(1,5t + 5)} dt = \int 1 ,5tdt + \int 5 dt = 0,75{t^2} + 5t + C\).
Suy ra \(h(t) = 0,75{t^2} + 5t + C\).
Vì cây con khi được trồng cao 12 cm nên \({\rm{h}}(0) = 12\).
Do đó \(0,75 \cdot {0^2} + 5 \cdot 0 + C = 12\), suy ra \(C = 12\).
Vậy công thức tính chiều cao của cây sau t năm là \(h(t) = 0,75{t^2} + 5t + 12\).
b) Khi cây được bán, tức là \({\rm{t}} = 6\), ta có \({\rm{h}}(6) = 0,75 \cdot {6^2} + 5 \cdot 6 + 12 = 69\).
Vậy khi được bán, cây cao 69 cm.
Lời giải
Gọi \(S(t)(0 \le t \le 30)\) là quãng đường máy bay di chuyển được sau \(t\) giây kể từ lúc bắt đầu chạy đà.
Ta có \(v(t) = {S^\prime }(t)\). Do đó, \(S(t)\) là một nguyên hàm của hàm số vận tốc \(v(t)\). Sử dụng tính chất của nguyên hàm ta được: \(S(t) = \int v (t){\rm{d}}t = \int {(5 + 3t)} {\rm{d}}t = 5\int {\rm{d}} t + 3\int t \;{\rm{d}}t = 5t + \frac{3}{2}{t^2} + C.\)
Theo giả thiết, \(S(0) = 0\) nên \(C = 0\) và ta được \(S(t) = \frac{3}{2}{t^2} + 5t(\;{\rm{m}})\).
Máy bay rời đường băng khi \(t = 30\) (giây) nên \(S = S(30) = \frac{3}{2} \cdot {30^2} + 5 \cdot 30 = 1500(\;{\rm{m}})\).
Vậy quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi nó rời đường băng là \(S = 1500\;{\rm{m}}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

