Câu hỏi:

04/08/2025 12 Lưu

Cho hình bình hành \(ABCD\) tâm \(O\). Lấy các điểm \(I\), \(J\) sao cho \(3\overrightarrow {IA}  + 2\overrightarrow {IC}  - 2\overrightarrow {ID}  = \vec 0;\) \(\overrightarrow {JA}  - 2\overrightarrow {JB}  + 2\overrightarrow {JC}  = \vec 0\). Khi đó \(\overrightarrow {IJ}  = k\overrightarrow {IO} \), vậy \(k = ?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(3\overrightarrow {IA}  + 2\overrightarrow {IC}  - 2\overrightarrow {ID}  = \vec 0 \Leftrightarrow 3\overrightarrow {IA}  + 2\left( {\overrightarrow {IC}  - \overrightarrow {ID} } \right) = \vec 0\)

\( \Leftrightarrow 3\overrightarrow {IA}  + 2\overrightarrow {DC}  = \vec 0 \Leftrightarrow  - 3\overrightarrow {AI}  + 2\overrightarrow {AB}  = \vec 0 \Leftrightarrow \overrightarrow {AI}  = \frac{2}{3}\overrightarrow {AB} \).

\(\overrightarrow {JA}  - 2\overrightarrow {JB}  + 2\overrightarrow {JC}  = \vec 0 \Leftrightarrow \overrightarrow {AJ}  - 2\left( {\overrightarrow {JC}  - \overrightarrow {JB} } \right) = \vec 0 \Leftrightarrow \overrightarrow {AJ}  = 2\overrightarrow {BC}  \Leftrightarrow \overrightarrow {AJ}  = 2\overrightarrow {AD} \).

\(\overrightarrow {IO}  = \overrightarrow {AO}  - \overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \frac{2}{3}\overrightarrow {AB}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

\(\overrightarrow {IJ}  = \overrightarrow {AJ}  - \overrightarrow {AI}  = 2\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + 2\overrightarrow {AD} \).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}\overrightarrow {IO}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {IJ}  =  - \frac{2}{3}\overrightarrow {AB}  + 2\overrightarrow {AD} \end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}6\overrightarrow {IO}  =  - \overrightarrow {AB}  + 3\overrightarrow {AD} \\\frac{3}{2}\overrightarrow {IJ}  =  - \overrightarrow {AB}  + 3\overrightarrow {AD} \end{array}\end{array} \Rightarrow 6\overrightarrow {IO}  = \frac{3}{2}\overrightarrow {IJ}  \Leftrightarrow \overrightarrow {IJ}  = 4\overrightarrow {IO} } \right.} \right.\).

Đáp án: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = \vec 0\).

b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC}  + \overrightarrow {ND}  = \vec 0\).

c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN} \). (1)

d) Đúng. Ta lại có \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BD}  + \overrightarrow {DN} \). (2)

Cộng hai đẳng thức (1), (2) vế theo vế, ta được

\(2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN}  + \overrightarrow {DN} } \right)\).

Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD} \).

Lời giải

c (ảnh 1)

a) Đúng. Xét tam giác \(ABD\) nội tiếp đường tròn đường kính \(AD\) nên \(AB \bot BD\); mặt khác \(AB \bot CH\) nên \(BD{\rm{//}}CH\) (1).

b) Đúng. Tương tự, tam giác \(ACD\) nội tiếp đường tròn đường kính \(AD\) nên \(AC \bot CD\); mặt khác \(AC \bot BH\) nên \(CD{\rm{//}}BH\) (2).

c) Sai. Từ (1) và (2) suy ra \(BDCH\) là hình bình hành.

Khi đó, \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} \) (vì \(O\) là trung điểm \(AD\)).

d) Sai. Ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC} \)      

 \( = 3\overrightarrow {OH}  + \left( {\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} } \right) = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} {\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP