Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục toạ độ là decimét) vào một ngôi nhà 1 tầng, người ta thấy rằng mặt trên và mặt dưới của mái nhà thuộc các mặt phẳng vuông góc với trục Oz. Biết rằng các vị trí \(A(3;4;33),D(9;8;35)\) lần lượt thuộc mặt dưới, mặt trên của mái nhà. Độ dày của mái nhà được tính bằng khoảng cách giữa mặt trên và mặt dưới của mái nhà đó. Hãy cho biết độ dày của mái nhà đó là bao nhiêu decimét?
Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục toạ độ là decimét) vào một ngôi nhà 1 tầng, người ta thấy rằng mặt trên và mặt dưới của mái nhà thuộc các mặt phẳng vuông góc với trục Oz. Biết rằng các vị trí \(A(3;4;33),D(9;8;35)\) lần lượt thuộc mặt dưới, mặt trên của mái nhà. Độ dày của mái nhà được tính bằng khoảng cách giữa mặt trên và mặt dưới của mái nhà đó. Hãy cho biết độ dày của mái nhà đó là bao nhiêu decimét?
Quảng cáo
Trả lời:

Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình mặt phẳng \((ABC)\) là: \(\frac{x}{3} + \frac{y}{3} + \frac{z}{2} = 1{\rm{ }}(*)\)
b) Thay toạ độ của điểm \(D\) vào vế trái của phương trình (*), ta có: \(\frac{1}{3} + \frac{1}{3} + \frac{1}{2} \ne 1\). Suy ra điểm \(D\) không thuộc mặt phẳng \((ABC)\).
Vậy bốn điểm A, B, C, D không đồng phẳng.
Lời giải
a) Vì \(B(4k;3k;2k)\) thuộc mặt phẳng \((CBEF):z = 3\) nên \(2k = 3\), suy ra \(k = \frac{3}{2}\). Vậy \(B\left( {6;\frac{9}{2};3} \right)\).
b) Ta có: \(\overrightarrow {OA} = (50;0;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{50}\\3&6\end{array}} \right|;{\mkern 1mu} \left| {\begin{array}{*{20}{c}}{50}&0\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (0; - 150;225).\)
Suy ra \(\vec n = (0; - 2;3)\) là một vectơ pháp tuyến của mặt phẳng \((AOBC)\).
Vậy phương trình mặt phẳng \((AOBC)\) là: \(0 \cdot (x - 0) + ( - 2) \cdot (y - 0) + 3 \cdot (z - 0) = 0 \Leftrightarrow 2y - 3z = 0.\)
c) Ta có:\(\overrightarrow {OD} = (0;20;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OD} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}{20}&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{l}}0&0\\3&6\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{20}\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (60;0; - 120){\rm{. }}\)
Suy ra \(\vec u = (1;0; - 2)\) là một vectơ pháp tuyến của mặt phẳng \((DOBE)\).
Vậy phương trình mặt phẳng \((DOBE)\) là: \(1 \cdot (x - 0) + 0 \cdot (y - 0) + ( - 2) \cdot (z - 0) = 0 \Leftrightarrow x - 2z = 0.\)
d) Một vec tơ pháp tuyến của mặt phẳng \((AOBC)\) và \((DOBE)\) lần lượt là: \(\vec p = (0;2; - 3)\) và \(\vec q = ( - 1;0;2)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.