Khối rubik được gắn vơi hệ toạ độ Oxyz có đơn vị bằng độ dài cạnh hình lập phương nhỏ (Hình vẽ ). Xét bốn điểm \(A(3;0;0),B(0;3;0),C(0;0;2)\) và \(D(1;1;1)\).
a) Lập phương trình mặt phẳng đi qua ba điểm A, B, C.
b) Bốn điểm A, B, C, D có đồng phẳng hay không?
Khối rubik được gắn vơi hệ toạ độ Oxyz có đơn vị bằng độ dài cạnh hình lập phương nhỏ (Hình vẽ ). Xét bốn điểm \(A(3;0;0),B(0;3;0),C(0;0;2)\) và \(D(1;1;1)\).

a) Lập phương trình mặt phẳng đi qua ba điểm A, B, C.
b) Bốn điểm A, B, C, D có đồng phẳng hay không?
Quảng cáo
Trả lời:
a) Phương trình mặt phẳng \((ABC)\) là: \(\frac{x}{3} + \frac{y}{3} + \frac{z}{2} = 1{\rm{ }}(*)\)
b) Thay toạ độ của điểm \(D\) vào vế trái của phương trình (*), ta có: \(\frac{1}{3} + \frac{1}{3} + \frac{1}{2} \ne 1\). Suy ra điểm \(D\) không thuộc mặt phẳng \((ABC)\).
Vậy bốn điểm A, B, C, D không đồng phẳng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\) là điểm mà quả bóng rơi trên mặt đất.
Khi đó \(M(3;4;0)\). Mặt phẳng \((P)\) có cặp vectơ chỉ phương là \(\vec k = (0;0;1)\) và \(\overrightarrow {OM} = (3;4;0)\) nên mặt phẳng \((P)\) có vectơ pháp tuyến là \(\vec n = ( - 4;3;0)\).
Phương trình mặt phẳng \((P)\) là \( - 4x + 3y = 0\).
Lời giải
a) Hai mặt phẳng tương ứng mỗi mái nhà là \((ABP)\) và \((CDP)\).
\( \bullet \) Do mặt phẳng \((ABP)\) có cặp vectơ chỉphương là \(\overrightarrow {AB} = (0;20;1),\overrightarrow {AP} = ( - 5;0; - 3)\) nên có một vectơ pháp tuyến là: \([\overrightarrow {AB} ,\overrightarrow {AP} ] = \left( {\left| {\begin{array}{*{20}{c}}{20}&1\\0&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\{ - 3}&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{20}\\{ - 5}&0\end{array}} \right|} \right) = ( - 60; - 5;100).\)
Mà mặt phẳng \((ABP)\) đi qua điểm \(A(10;0;9)\) nên có phương trình là:
\( - 60(x - 10) - 5(y - 0) + 100(z - 9) = 0 \Leftrightarrow 12x + y - 20z + 60 = 0.\)
\( \bullet \) Do mặt phẳng \((CDP)\) có cặp vectơ chỉ phương là \(\overrightarrow {DP} = (5;0; - 3),\overrightarrow {DC} = (0;20;1)\) nên có một vectơ pháp tuyến là: \([\overrightarrow {DP} ,\overrightarrow {DC} ] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\{20}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&5\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&0\\0&{20}\end{array}} \right|} \right) = (60; - 5;100).\)
Mà mặt phẳng \((CDP)\) đi qua điểm \(D(0;0;9)\) nên có phương trình là:
\(60(x - 0) - 5(y - 0) + 100(z - 9) = 0 \Leftrightarrow 12x - y + 20z - 180 = 0.\)
b) Vì các bức tường của nhà kho đều được xây vuông góc với mặt đất nên vởi hệ toạ độ trên ta có \(Q(x;20;z)\).
Do điểm \(Q\) thuộc mặt phẳng \((ABP)\) nên toạ độ của điểm \(Q\) thoả mãn:
\(12x + 20 - 20z + 60 = 0,{\rm{ t?c l\`a }}3x - 5z = - 20.{\rm{ }}\)
Do điểm \(Q\) thuộc mặt phẳng \((CDP)\) nên toạ độ của điểm \(Q\) thoả mãn \(12x - 20 + 20z - 180 = 0\), tức là \(3x + 5z = 50\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3x - 5z = - 20}\\{3x + 5z = 50}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{z = 7}\end{array}} \right.} \right.\). Vậy \(Q(5;20;7)\).
c) Với \(P(5;0;6)\) và \(Q(5;20;7)\) ta có: \(\overrightarrow {PQ} = (0;20;1)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.