Câu hỏi:

04/08/2025 34 Lưu

Trong không gian Oxyz, một ngôi nhà có sàn nhà thuộc mặt phẳng Oxy , trần nhà tầng 1 thuộc mặt phẳng \(z - 1 = 0\), mái nhà tầng 2 thuộc mặt phẳng \(x + y + 50z - 100 = 0\). Hỏi trong ba mặt phẳng tương ứng chứa sàn nhà, trần tầng 1 , mái tầng 2 , hai mặt phẳng nào song song với nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vi mặt phẳng Oxy vuông góc với Oz nên mặt phẳng Oxy nhận \(\vec k = (0;0;1)\) làm một vectơ pháp tuyến.

Vi mặt phẳng Oxy đi qua điểm \({\rm{O}}(0;0;0)\) và có vectơ pháp tuyến \(\vec k = (0;0;1)\) nên có phương trình là: \(z - 0 = 0\) hay \(z = 0\).

Mặt phẳng \(z - 1 = 0\) có \(\overrightarrow {{n_1}}  = (0;0;1)\)

vi \(\overrightarrow {{n_1}}  = \vec k\) và \(0 \ne  - 1\) nên mặt phẳng chứa sàn nhà song song với trần tầng 1 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình mặt phẳng \((ABC)\) là: \(\frac{x}{3} + \frac{y}{3} + \frac{z}{2} = 1{\rm{   }}(*)\)

b) Thay toạ độ của điểm \(D\) vào vế trái của phương trình (*), ta có: \(\frac{1}{3} + \frac{1}{3} + \frac{1}{2} \ne 1\). Suy ra điểm \(D\) không thuộc mặt phẳng \((ABC)\).

Vậy bốn điểm A, B, C, D không đồng phẳng.

Lời giải

a) Vì \(B(4k;3k;2k)\) thuộc mặt phẳng \((CBEF):z = 3\) nên \(2k = 3\), suy ra \(k = \frac{3}{2}\). Vậy \(B\left( {6;\frac{9}{2};3} \right)\).

b) Ta có: \(\overrightarrow {OA}  = (50;0;0),\overrightarrow {OB}  = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{50}\\3&6\end{array}} \right|;{\mkern 1mu} \left| {\begin{array}{*{20}{c}}{50}&0\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (0; - 150;225).\)

Suy ra \(\vec n = (0; - 2;3)\) là một vectơ pháp tuyến của mặt phẳng \((AOBC)\).

Vậy phương trình mặt phẳng \((AOBC)\) là: \(0 \cdot (x - 0) + ( - 2) \cdot (y - 0) + 3 \cdot (z - 0) = 0 \Leftrightarrow 2y - 3z = 0.\)

c) Ta có:\(\overrightarrow {OD}  = (0;20;0),\overrightarrow {OB}  = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OD} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}{20}&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{l}}0&0\\3&6\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{20}\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (60;0; - 120){\rm{. }}\)

Suy ra \(\vec u = (1;0; - 2)\) là một vectơ pháp tuyến của mặt phẳng \((DOBE)\).

Vậy phương trình mặt phẳng \((DOBE)\) là: \(1 \cdot (x - 0) + 0 \cdot (y - 0) + ( - 2) \cdot (z - 0) = 0 \Leftrightarrow x - 2z = 0.\)

d) Một vec tơ pháp tuyến của mặt phẳng \((AOBC)\) và \((DOBE)\) lần lượt là: \(\vec p = (0;2; - 3)\) và \(\vec q = ( - 1;0;2)\).