Trong không gian \(Oxyz\) cho \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0;0;6} \right),D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) là mặt phẳng song song với \(mp\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\). Phương trình của \(\left( P \right)\) là
A. \(6x + 3y + 2z - 24 = 0\)
B. \(6x + 3y + 2z - 12 = 0\)
C. \(6x + 3y + 2z = 0\)
D. \(6x + 3y + 2z - 36 = 0\)
Quảng cáo
Trả lời:

Chọn A
\[\left( {ABC} \right):\frac{x}{2} + \frac{y}{4} + \frac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\].
\[\left( P \right){\rm{//}}\left( {ABC} \right) \Rightarrow \left( P \right):6x + 3y + 2z + m = 0\,\,\left( {m \ne - 12} \right)\].
\(\left( P \right)\) cách đều \(D\) và mặt phẳng \[\left( {ABC} \right) \Rightarrow d\left( {D,\left( P \right)} \right) = d\left( {A,\left( P \right)} \right)\]
\[ \Leftrightarrow \frac{{\left| {6.2 + 3.4 + 2.6 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \frac{{\left| {6.2 + 3.0 + 2.0 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} \Leftrightarrow \left| {36 + m} \right| = \left| {12 + m} \right| \Leftrightarrow \left[ \begin{array}{l}36 + m = 12 + m\\36 + m = - 12 - m\end{array} \right.\]
\[ \Leftrightarrow m = - 24\] (nhận).
Vậy phương trình của \(\left( P \right)\) là \(6x + 3y + 2z - 24 = 0\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Giả sử
Khi đó mặt phẳng () có dạng:
Do
Ta có:
Do là trực tâm tam giác
nên:
Thay vào
ta có:
Do đó
Câu 2
A. \(\frac{{2a}}{3}\).
B. \(\frac{{4a}}{3}\).
C. \(a\).
D. \(\frac{{3a}}{4}\).
Lời giải
Chọn B
Hình chiếu của \(SB\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(AB\) \( \Rightarrow \) Góc giữa \(SB\) và mặt đáy là góc giữa \[SB\] và \(AB\) và bằng góc \(\widehat {SBA} = {45^{\rm{o}}}\).
Tam giác \(SAB\) vuông cân tại \(A\) \( \Rightarrow SA = 2a\).
Chọn hệ trục tọa độ như hình vẽ ta có: \(A\left( {0;0;0} \right)\), \(B\left( {0;2a;0} \right)\), \(C\left( {a;a;0} \right)\), \[D\left( {a;0;0} \right)\], \(S\left( {0;0;2a} \right)\), \(E\left( {\frac{a}{2};0;a} \right)\).
\[\overrightarrow {AC} = \left( {a;a;0} \right)\], \(\overrightarrow {AE} = \left( {\frac{a}{2};0;a} \right)\)\( \Rightarrow \overrightarrow {AC} \wedge \overrightarrow {A{\rm{E}}} = \left( {{a^2}; - {a^2}; - \frac{{{a^2}}}{2}} \right)\)
\( \Rightarrow \) mặt phẳng \(\left( {ACE} \right)\) có véctơ pháp tuyến \(\overrightarrow n = \left( {2; - 2; - 1} \right)\)\( \Rightarrow \left( {ACE} \right):2x - 2y - z = 0\).
Vậy \(d\left( {B,\left( {ACE} \right)} \right) = \frac{{\left| {2.2a} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{4a}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(x - 2y - 2z = 0\) hoặc \(x + 4y - 2z = 0\).
B. \(x + 2y + 2z = 0\) hoặc \(x - 4y - 2z = 0\).
C. \(x + 2y - 2z = 0\) hoặc \(x + 4y - 2z = 0\).
D. \(x + 2y - 2z = 0\) hoặc \(x - 4y - 2z = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(d\left( {B,\left( {CDM} \right)} \right) = 2\).
B. \(d\left( {B,\left( {CDM} \right)} \right) = 2\sqrt 2 \).
C. \(d\left( {B,\left( {CDM} \right)} \right) = \frac{1}{{\sqrt 2 }}\).
D. \(d\left( {B,\left( {CDM} \right)} \right) = \sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{{20}}{{3\sqrt {129} }}.\]
B. \[\frac{{20}}{{\sqrt {129} }}.\]
C. \[\frac{1}{4}.\]
D. \[\frac{1}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\left( Q \right):2x - 2y + z + 4 = 0\].
B. \[\left( Q \right):2x - 2y + z - 14 = 0\].
C. \[\left( Q \right):2x - 2y + z - 19 = 0\].
D. \[\left( Q \right):2x - 2y + z - 8 = 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.