Hai người cùng kéo một xe goòng. Người thứ nhất và người thứ hai lần lượt tác dụng vào chiếc xe goòng bằng hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) (hai lực vuông góc nhau, phương lực \(\overrightarrow {{F_2}} \) song song mặt đường) như hình vẽ và lực tổng hợp hợp với phương ngang (mặt đường) một góc \(30^\circ \). Người thứ nhất kéo một lực là \[40\sqrt 3 \] (N), người thứ hai kéo một lực là \[80\] (N).

a) \(\left| {\overrightarrow {{F_1}} } \right| = 80,\left| {\overrightarrow {{F_2}} } \right| = 40\sqrt 3 \).
b) \(\left( {\overrightarrow {{F_2}} ,\overrightarrow F } \right) = 30^\circ \).
c) Độ lớn của \(\overrightarrow F \) bằng \(40\sqrt 7 \) (N).
d) Công sinh ra khi kéo vật đi một khoảng dài \(50\) (m) là \(a\sqrt b \) (J) thì tổng \(a + b = 1021\).
Hai người cùng kéo một xe goòng. Người thứ nhất và người thứ hai lần lượt tác dụng vào chiếc xe goòng bằng hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) (hai lực vuông góc nhau, phương lực \(\overrightarrow {{F_2}} \) song song mặt đường) như hình vẽ và lực tổng hợp hợp với phương ngang (mặt đường) một góc \(30^\circ \). Người thứ nhất kéo một lực là \[40\sqrt 3 \] (N), người thứ hai kéo một lực là \[80\] (N).
a) \(\left| {\overrightarrow {{F_1}} } \right| = 80,\left| {\overrightarrow {{F_2}} } \right| = 40\sqrt 3 \).
b) \(\left( {\overrightarrow {{F_2}} ,\overrightarrow F } \right) = 30^\circ \).
c) Độ lớn của \(\overrightarrow F \) bằng \(40\sqrt 7 \) (N).
d) Công sinh ra khi kéo vật đi một khoảng dài \(50\) (m) là \(a\sqrt b \) (J) thì tổng \(a + b = 1021\).
Quảng cáo
Trả lời:

a) Sai. Người thứ nhất kéo một lực là \[40\sqrt 3 \,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = 40\sqrt 3 \], người thứ hai kéo một lực là \[80\,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = 80\].
b) Đúng. Lực tổng hợp, hợp với phương ngang (mặt đường) một góc \(30^\circ \) và phương lực \(\overrightarrow {{F_2}} \) song song mặt đường nên \(\left( {\overrightarrow {{F_2}} ,\overrightarrow F } \right) = 30^\circ \).
c) Đúng. Ta có lực tổng hợp của hai người là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \).
Suy ra độ lớn của \(\overrightarrow F \) là: \(F = \sqrt {{F_1}^2 + {F_2}^2} = 40\sqrt 7 \,{\rm{(N)}}\).
d) Đúng. Công sinh ra khi kéo vật là
\[A = \overrightarrow F \cdot \overrightarrow d = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right| \cdot \cos \left( {\overrightarrow F ,\overrightarrow d } \right) = 40\sqrt 7 \cdot 5 \cdot \cos 30^\circ = 1000\sqrt {21} \,{\rm{(J)}} = a\sqrt b {\rm{(J)}} \Rightarrow \left\{ \begin{array}{l}a = 1000\\b = 21\end{array} \right.\].
Khi đó \(a + b = 1021\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
b) Sai. \(\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{3}{4}\overrightarrow {BD} = \overrightarrow {AB} + \frac{3}{4}\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = \frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} .\)
c) Đúng. \(\overrightarrow {EF} = \overrightarrow {AF} - \overrightarrow {AE} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} .\)
d) Đúng. Ta có \(\overrightarrow {AF} \cdot \overrightarrow {EF} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)\)
\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)
Ta có \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).
\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)
\( \Rightarrow {\overrightarrow {AF} ^2} = {\overrightarrow {EF} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).
Lời giải
Ta có \[\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ = - 3\].
\[{\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a \cdot \overrightarrow b + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a \cdot \overrightarrow b + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]
\[ \Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {37} \approx 6,1\].
Đáp án: 6,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.