Một ô tô có khối lượng 2,5 tấn chạy từ chân lên đỉnh một con dốc thẳng. Tính công của trọng lực (đơn vị KJ và làm tròn đến hàng đơn vị) tác động lên xe, biết dốc dài 50 m và nghiêng \(15^\circ \) so với phương nằm ngang (trong tính toán, lấy gia tốc trọng trường bằng \(10\,\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)).
Một ô tô có khối lượng 2,5 tấn chạy từ chân lên đỉnh một con dốc thẳng. Tính công của trọng lực (đơn vị KJ và làm tròn đến hàng đơn vị) tác động lên xe, biết dốc dài 50 m và nghiêng \(15^\circ \) so với phương nằm ngang (trong tính toán, lấy gia tốc trọng trường bằng \(10\,\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)).
Quảng cáo
Trả lời:
Trọng lực của ô tô có độ lớn bằng \(\left| {\vec P} \right| = 2500 \times 10 = 25000\) (N).
Trọng lực \(\overrightarrow P \) của ô tô hợp với hướng chuyển dời \(\overrightarrow {MN} \) một góc \(\alpha = 90^\circ + 15^\circ = 105^\circ \).
Trọng lực \(\overrightarrow P \) được phân tích thành hai thành phần \(\overrightarrow {{P_1}} \) và \(\overrightarrow {{P_2}} :\overrightarrow P = \overrightarrow {{P_1}} + \overrightarrow {{P_2}} \), trong đó \(\overrightarrow {{P_1}} \) có phương vuông góc với mặt dốc, \(\overrightarrow {{P_2}} \) có phương song song với mặt dốc.
Ta nhận thấy rằng, \(\overrightarrow {{P_1}} \) không có tác dụng đối với chuyển dời \(\overrightarrow {MN} \) của xe, còn \(\overrightarrow {{P_2}} \) ngược hướng với \(\overrightarrow {MN} \). Do đó, công của trọng lực tác động lên xe bằng
\(A = \overrightarrow P \cdot \overrightarrow {MN} = \left| {\overrightarrow P } \right| \cdot \left| {\overrightarrow {MN} } \right| \cdot \cos \left( {\overrightarrow P ,\overrightarrow {MN} } \right) = 25000 \cdot 50 \cdot \cos 105^\circ \approx - 323\,524\) (J) \( \approx - 324\) (KJ).
Đáp án: −324.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} \).
b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên
\(3\overrightarrow {BG} = \overrightarrow {BA} + \overrightarrow {BM} + \overrightarrow {BC} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {BA} + \overrightarrow {BC} = \frac{3}{2}\overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BG} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} .\)
c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC} \cdot \overrightarrow {BA} = 0\).
d) Sai. Ta có \(\overrightarrow {BG} \cdot \overrightarrow {CM} = \left( {\frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA} \cdot \overrightarrow {BC} - \frac{1}{3}{\overrightarrow {BC} ^2}\)
\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).
Lời giải
a) Sai. \(\overrightarrow {AB} \cdot \overrightarrow {AC} = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ = 3{a^2}\).
b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ} = \frac{7}{{12}}\overrightarrow {AC} \).
Khi đó, \(\overrightarrow {BJ} = \overrightarrow {BA} + \overrightarrow {AJ} = - \overrightarrow {AB} + \frac{7}{{12}}\overrightarrow {AC} \).
d) Đúng. Ta có \(\overrightarrow {AI} \cdot \overrightarrow {BJ} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB} + \frac{7}{{12}}\overrightarrow {AC} } \right)\)
\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB} \cdot \overrightarrow {AC} - \overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)
\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).
Vậy \(AI \bot BJ\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.