Trong không gian Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3 - 3t}\\{z = 5 + 4t}\end{array}\quad (t \in \mathbb{R})} \right.\).
a) Hãy tìm toạ độ một vectơ chỉ phương của \(d\).
b) Hãy tìm toạ độ của các điểm thuộc \(d\) ứng với các giá trị \(t = 0,t = - 1,t = 2\).
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3 - 3t}\\{z = 5 + 4t}\end{array}\quad (t \in \mathbb{R})} \right.\).
a) Hãy tìm toạ độ một vectơ chỉ phương của \(d\).
b) Hãy tìm toạ độ của các điểm thuộc \(d\) ứng với các giá trị \(t = 0,t = - 1,t = 2\).
Quảng cáo
Trả lời:

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).
b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2.0 = - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)
Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).
Tương tự với \(t = - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(M\) thuộc \(\Delta \) nên \(M(2 - 3t;4 + t;5 - 2t)(t \in \mathbb{R})\).
Ta có: \(2 - 3t = 5\), suy ra \(t = - 1\). Do đó \(4|t = 4|( - 1) = 3,5 - 2t = 5 - 2 \cdot ( - 1) = 7\). Vậy \(M(5;3;7)\).
b) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{8 = 2 - 3t}\\{2 = 4 + t}\\{9 = 5 - 2t}\end{array} \Leftrightarrow t = - 2} \right.\). Suy ra tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(N(8;2;9)\) thuộc đường thẳng \(\Delta \).
c) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ - 1 = 2 - 3t}\\{5 = 4 + t}\\{4 = 5 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.} \right.\). Suy ra không tồn tại số thực \(t\) thoả
mãn hệ phương trình đó. Vậy điểm \(P( - 1;5;4)\) không thuộc đường thẳng \(\Delta \).
Do \(\vec u = ( - 3;1; - 2)\) là một vectơ chỉ phương của \(\Delta \) và \(\Delta //{\Delta ^\prime }\) nên \(\vec u = ( - 3;1; - 2)\) cũng là một vectơ chỉ phương của \(\Delta \) '.
Phương trình tham số của đường thẳng \({\Delta ^\prime }\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 3{t^\prime }}\\{y = 5 + {t^\prime }}\\{z = 4 - 2{t^\prime }}\end{array}} \right.\) ( \({t^\prime }\) là tham số).
d) Vì \(I\) thuộc \(\Delta \) nên \(I(2 - 3a;4 + a;5 - 2a)(a \in \mathbb{R})\). Mà \(I\) thuộc \((P)\) nên \((2 - 3a) - (4 + a) + (5 - 2a) + 9 = 0 \Leftrightarrow a = 2\). Vậy \(I( - 4;6;1)\).
Lời giải

Ta có \(\overrightarrow {AB} = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .
\(\overrightarrow {A{A^\prime }} = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).
\(\overrightarrow {AC} = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.