Câu hỏi:

09/08/2025 13 Lưu

Cho hình hộp \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }\). Hãy chỉ ra các vectơ chỉ phương của đường thẳng \(B{C^\prime }\) mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp \(ABCD.{A^\prime }{B^\prime }{C^\prime }{D^\prime }\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=22ty=5+3tz=7+4t ( t là tham số), x22=y+53=z74.

b) Ta có: \(\overrightarrow {MN}  = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=1+3ty=5tz=4t ( t là tham số), x+13=y5=z41

c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta  \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:

x=3+2ty=25tz=1+6t ( t là tham số), x32=y25=z+16

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP