Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) đi qua hai điểm \(M(2; - 1;3)\) và \(N(3;0;4)\).
Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) đi qua hai điểm \(M(2; - 1;3)\) và \(N(3;0;4)\).
Quảng cáo
Trả lời:
a)+ Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \({\rm{A}}( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 2t}\\{y = 3 + 3t}\\{z = 2 + 4t}\end{array}\quad } \right.\) (t là tham số).
+ Phương trình chính tắc của đường thẳng \(\Delta \) đi qua điểm \({\rm{A}}( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\) là: \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 2}}{4}\).
b) Ta có \(\overrightarrow {MN} = (1;1;1)\) là một vectơ chỉ phương của đường thẳng \(\Delta \).
+ Phương trình tham số của đường thẳng \(\Delta \) là:
+ Phương trình chính tắc của đường thẳng \(\Delta \) là: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{1}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
b) Ta có: \(\overrightarrow {MN} = (3;5; - 1)\) là một vectơ chi phương của \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
c) Vectơ \(\vec n = (2; - 5;6)\) là một vectơ pháp tuyến của mặt phẳng \((P)\) mà \(\Delta \bot (P)\) nên \(\vec n = (2; - 5;6)\) là một vectơ chi phương của đường thẳng \(\Delta \). Suy ra phương trình tham số và phương trình chính tắc của \(\Delta \) lần lượt là:
Lời giải
a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).
b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:
Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:
Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.