Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) đi qua hai điểm \(M(2; - 1;3)\) và \(N(3;0;4)\).
Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\);
b) đi qua hai điểm \(M(2; - 1;3)\) và \(N(3;0;4)\).
Quảng cáo
Trả lời:

a)+ Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \({\rm{A}}( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 2t}\\{y = 3 + 3t}\\{z = 2 + 4t}\end{array}\quad } \right.\) (t là tham số).
+ Phương trình chính tắc của đường thẳng \(\Delta \) đi qua điểm \({\rm{A}}( - 1;3;2)\) và có vectơ chỉ phương \(\vec u = ( - 2;3;4)\) là: \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 2}}{4}\).
b) Ta có \(\overrightarrow {MN} = (1;1;1)\) là một vectơ chỉ phương của đường thẳng \(\Delta \).
+ Phương trình tham số của đường thẳng \(\Delta \) là:
+ Phương trình chính tắc của đường thẳng \(\Delta \) là: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{1}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).
b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2.0 = - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)
Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).
Tương tự với \(t = - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).
Lời giải
a) Vì \(M\) thuộc \(\Delta \) nên \(M(2 - 3t;4 + t;5 - 2t)(t \in \mathbb{R})\).
Ta có: \(2 - 3t = 5\), suy ra \(t = - 1\). Do đó \(4|t = 4|( - 1) = 3,5 - 2t = 5 - 2 \cdot ( - 1) = 7\). Vậy \(M(5;3;7)\).
b) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{8 = 2 - 3t}\\{2 = 4 + t}\\{9 = 5 - 2t}\end{array} \Leftrightarrow t = - 2} \right.\). Suy ra tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(N(8;2;9)\) thuộc đường thẳng \(\Delta \).
c) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ - 1 = 2 - 3t}\\{5 = 4 + t}\\{4 = 5 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.} \right.\). Suy ra không tồn tại số thực \(t\) thoả
mãn hệ phương trình đó. Vậy điểm \(P( - 1;5;4)\) không thuộc đường thẳng \(\Delta \).
Do \(\vec u = ( - 3;1; - 2)\) là một vectơ chỉ phương của \(\Delta \) và \(\Delta //{\Delta ^\prime }\) nên \(\vec u = ( - 3;1; - 2)\) cũng là một vectơ chỉ phương của \(\Delta \) '.
Phương trình tham số của đường thẳng \({\Delta ^\prime }\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 3{t^\prime }}\\{y = 5 + {t^\prime }}\\{z = 4 - 2{t^\prime }}\end{array}} \right.\) ( \({t^\prime }\) là tham số).
d) Vì \(I\) thuộc \(\Delta \) nên \(I(2 - 3a;4 + a;5 - 2a)(a \in \mathbb{R})\). Mà \(I\) thuộc \((P)\) nên \((2 - 3a) - (4 + a) + (5 - 2a) + 9 = 0 \Leftrightarrow a = 2\). Vậy \(I( - 4;6;1)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.