Câu hỏi:

11/08/2025 32 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a,\) gọi \(\alpha \) là góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {BB'D'D} \right).\) Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ, tính \(\sin \alpha \).

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a gọi α là góc giữa đường thẳng A'B và mặt phẳng BB'D'D (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a gọi α là góc giữa đường thẳng A'B và mặt phẳng BB'D'D (ảnh 2)

+ Từ hệ trục tọa độ \(Oxyz\) với \(A \equiv O\left( {0;0;0} \right)\,,\,B\left( {a;0;0} \right)\,,\,C\left( {a;a;0} \right)\,,\,D\left( {0;a;0} \right)\),\(A'\left( {0;0;a} \right)\,,\,\)

\(B'\left( {a;0;a} \right)\,,\,\)\(C'\left( {a;a;a} \right)\,,\,D'\left( {0;a;a} \right).\)

+Ta thấy \(OC \bot \left( {BB'D'D} \right)\) và \(\overrightarrow {OC}  = \left( {a;a;0} \right)\) nên suy ra mặt phẳng \(\left( {BB'D'D} \right)\) có một vec tơ pháp tuyến là \(\overrightarrow n  = \left( {1;1;0.} \right)\).

+Đường thẳng \(A'B\)có vectơ chỉ phương là \(\overrightarrow {A'B}  = \left( {a;0; - a} \right)\) ta chọn \(\overrightarrow u  = \left( {1;0; - 1} \right).\)

+Ta có \(\sin \alpha  = \frac{{\left| {\,\overrightarrow n .\overrightarrow {u\,} } \right|}}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow u } \right|}} = \frac{{\left| {1.1 + 1.0 + 0.( - 1)} \right|}}{{\sqrt {{1^2} + {1^2} + {0^2}} .\sqrt {{1^2} + {0^2} + {{( - 1)}^2}} }} = \frac{1}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Câu 2

Lời giải

Chọn A

Áp dụng công thức ở lý thuyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP