Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a,\) gọi \(\alpha \) là góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {BB'D'D} \right).\) Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ, tính \(\sin \alpha \).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a,\) gọi \(\alpha \) là góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {BB'D'D} \right).\) Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ, tính \(\sin \alpha \).

Quảng cáo
Trả lời:

Chọn C

+ Từ hệ trục tọa độ \(Oxyz\) với \(A \equiv O\left( {0;0;0} \right)\,,\,B\left( {a;0;0} \right)\,,\,C\left( {a;a;0} \right)\,,\,D\left( {0;a;0} \right)\),\(A'\left( {0;0;a} \right)\,,\,\)
\(B'\left( {a;0;a} \right)\,,\,\)\(C'\left( {a;a;a} \right)\,,\,D'\left( {0;a;a} \right).\)
+Ta thấy \(OC \bot \left( {BB'D'D} \right)\) và \(\overrightarrow {OC} = \left( {a;a;0} \right)\) nên suy ra mặt phẳng \(\left( {BB'D'D} \right)\) có một vec tơ pháp tuyến là \(\overrightarrow n = \left( {1;1;0.} \right)\).
+Đường thẳng \(A'B\)có vectơ chỉ phương là \(\overrightarrow {A'B} = \left( {a;0; - a} \right)\) ta chọn \(\overrightarrow u = \left( {1;0; - 1} \right).\)
+Ta có \(\sin \alpha = \frac{{\left| {\,\overrightarrow n .\overrightarrow {u\,} } \right|}}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow u } \right|}} = \frac{{\left| {1.1 + 1.0 + 0.( - 1)} \right|}}{{\sqrt {{1^2} + {1^2} + {0^2}} .\sqrt {{1^2} + {0^2} + {{( - 1)}^2}} }} = \frac{1}{2}.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]
\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]
Câu 2
A. \(\cos \alpha = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)
B.\(\cos \alpha \,\, = \,\,\frac{{\overrightarrow {AB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)
Lời giải
Chọn A
Áp dụng công thức ở lý thuyết.
Câu 3
A. 600
C. 1200
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\cos \alpha = \frac{1}{{\sqrt 3 }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.