Câu hỏi:

11/08/2025 27 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có \(AB = a\), \[SA = a\sqrt 2 \]. Gọi \(G\) là trọng tâm tam giác \(SCD\). Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi \(O = AC \cap BD\).

Tam giác \(SAO\) vuông : \(SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 6 }}{2}\)

Gắn tọa độ như hình vẽ

Cho hình chóp tứ giác đều S.ABCD có AB =a, SA = a√2. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng: (ảnh 1)

\(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(C\left( {a;a;0} \right)\), \(D\left( {0;a;0} \right)\), \(O\left( {\frac{a}{2};\frac{a}{2};0} \right)\), \(S\left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\).

Vì \(G\) là trọng tâm tam giác \(SCD\) nên \(G\left( {\frac{a}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right)\).

Ta có : \(\overrightarrow {AS}  = \left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\) \( = \frac{a}{2}\left( {1;1;\sqrt 6 } \right)\), \(\overrightarrow {BG}  = \left( {\frac{{ - a}}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right) = \frac{a}{6}\left( { - 3;5;\sqrt 6 } \right)\).

Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:

\(\cos \left( {BG;SA} \right) = \frac{{\left| {\overrightarrow {BG} .\overrightarrow {AS} } \right|}}{{BG.AS}}\)\( = \frac{{\left| { - 3 + 5 + 6} \right|}}{{\sqrt {40} .\sqrt 8 }} = \frac{{\sqrt 5 }}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Câu 2

Lời giải

Chọn A

Áp dụng công thức ở lý thuyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP