Câu hỏi:

11/08/2025 73 Lưu

Cho hình chóp \(S.ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(AB = BC = a,{\rm{ }}AD = 2a\). Biết \(SA \bot (ABCD),{\rm{ }}SA = a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(SB\) và \(CD\). Tính sin góc giữa đường thẳng \(MN\) và mặt phẳng \((SAC)\).

A. \(\frac{{3\sqrt 5 }}{{10}}.\)              
B. \(\frac{{2\sqrt 5 }}{5}.\)   
C. \(\frac{{\sqrt 5 }}{5}.\)   
D. \(\frac{{\sqrt {55} }}{{10}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a. Biết SA vuông góc ABCD, SA = a. Gọi M và N lần lượt là trung điểm của SB và CD (ảnh 1)

Đặt không gian \[Oxyz\] với \(A \equiv O(0;0;0),{\rm{ }}AB \equiv Ox,{\rm{ }}AD \equiv Oy,{\rm{ }}AS \equiv Oz\).

Ta có: \(S(0;0;a),{\rm{ }}B(a;0;0),{\rm{ }}D(0;2a;0),{\rm{ }}C(a;a;0)\).

\(M(\frac{a}{2};0;\frac{a}{2}),{\rm{ }}N(\frac{a}{2};\frac{{3a}}{2};0)\)

\(\overrightarrow {MN}  = (0;\frac{{3a}}{2};\frac{{ - a}}{2})\)

\[\overrightarrow {AS}  = (0;0;a),\overrightarrow {{\rm{ }}AC}  = (a;a;0)\]

\[ \Rightarrow \left[ {\overrightarrow {AS} ,\overrightarrow {AC} } \right] = ( - {a^2};{a^2};0)\] là vtpt của mặt phẳng \((SAC)\).

\(\sin (MN;(SAC)) = \frac{{\overrightarrow {MN} .{{\overrightarrow n }_{(SAC)}}}}{{\left| {\overrightarrow {MN} } \right|\left| {{{\overrightarrow n }_{(SAC)}}} \right|}} = \frac{{\frac{{3{a^3}}}{2}}}{{\sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}} .\sqrt {{a^4} + {a^4}} }} = \frac{{3\sqrt 5 }}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Lời giải

Chọn D

Cho hình lăng trụ đứng ABC.A'B'C' có AB = AC = a góc BAC = 120 độ, AA'= a. Gọi M, N lần lượt là trung điểm của B'C' và CC' (ảnh 1)

Gọi \[H\] là trung điểm \[BC\], \[BC = a\sqrt 3 \], \[AH = \frac{a}{2}\].

Chọn hệ trục tọa độ \[H\left( {0;0;0} \right)\], \[A\left( {\frac{a}{2};0;0} \right)\], \[B\left( {0;\frac{{a\sqrt 3 }}{2};0} \right)\], \[C\left( {0; - \frac{{a\sqrt 3 }}{2};0} \right)\],

\[M\left( {0;0;a} \right)\], \[N\left( {0; - \frac{{a\sqrt 3 }}{2};\frac{a}{2}} \right)\]. Gọi \[\varphi \] là góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\).

\(\left( {AMN} \right)\) có một vtpt \[\vec n = \left[ {\overrightarrow {AM} ,\overrightarrow {AN} } \right]\]\[ = \left( {\frac{{\sqrt 3 }}{2};\frac{{ - 1}}{4};\frac{{\sqrt 3 }}{4}} \right)\]

\(\left( {ABC} \right)\) có một vtpt \[\overrightarrow {HM} \]\[ = \left( {0;0;1} \right)\], từ đó \[\cos \varphi  = \frac{{\left| {\vec n.\overrightarrow {HM} } \right|}}{{\left| {\vec n} \right|HM}}\]\[ = \frac{{\frac{{\sqrt 3 }}{4}}}{{1.1}}\]\[ = \frac{{\sqrt 3 }}{4}\].

Câu 4

A. \(\cos \alpha  = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)  

B.\(\cos \alpha \,\, = \,\,\frac{{\overrightarrow {AB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

C. \[\cos \alpha \,\, = \,\,\frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]} \right|}}.\]                          
D.\(\cos \alpha \,\, = \,\,\frac{{\left| {\left[ {\overrightarrow {AB} .\overrightarrow {CD} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP