Câu hỏi:

11/08/2025 10 Lưu

Cho hình chóp \(S.ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(AB = BC = a,{\rm{ }}AD = 2a\). Biết \(SA \bot (ABCD),{\rm{ }}SA = a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(SB\) và \(CD\). Tính sin góc giữa đường thẳng \(MN\) và mặt phẳng \((SAC)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a. Biết SA vuông góc ABCD, SA = a. Gọi M và N lần lượt là trung điểm của SB và CD (ảnh 1)

Đặt không gian \[Oxyz\] với \(A \equiv O(0;0;0),{\rm{ }}AB \equiv Ox,{\rm{ }}AD \equiv Oy,{\rm{ }}AS \equiv Oz\).

Ta có: \(S(0;0;a),{\rm{ }}B(a;0;0),{\rm{ }}D(0;2a;0),{\rm{ }}C(a;a;0)\).

\(M(\frac{a}{2};0;\frac{a}{2}),{\rm{ }}N(\frac{a}{2};\frac{{3a}}{2};0)\)

\(\overrightarrow {MN}  = (0;\frac{{3a}}{2};\frac{{ - a}}{2})\)

\[\overrightarrow {AS}  = (0;0;a),\overrightarrow {{\rm{ }}AC}  = (a;a;0)\]

\[ \Rightarrow \left[ {\overrightarrow {AS} ,\overrightarrow {AC} } \right] = ( - {a^2};{a^2};0)\] là vtpt của mặt phẳng \((SAC)\).

\(\sin (MN;(SAC)) = \frac{{\overrightarrow {MN} .{{\overrightarrow n }_{(SAC)}}}}{{\left| {\overrightarrow {MN} } \right|\left| {{{\overrightarrow n }_{(SAC)}}} \right|}} = \frac{{\frac{{3{a^3}}}{2}}}{{\sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}} .\sqrt {{a^4} + {a^4}} }} = \frac{{3\sqrt 5 }}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và N lần lượt là trung điểm của hai cạnh SA và BC (ảnh 1)

Gọi \[I\] hình chiếu của \[M\] lên \[\left( {ABCD} \right)\], suy ra \[I\] là trung điểm của \[AO\].

Khi đó \[CI = \frac{3}{4}AC = \frac{{3a\sqrt 2 }}{4}\].

Xét \[\Delta CNI\]có: \[CN = \frac{a}{2}\], \[\widehat {NCI} = {45^o}\].

Áp dụng định lý cosin ta có:

\[NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos {{45}^o}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{9{a^2}}}{8} - 2.\frac{a}{2}.\frac{{3a\sqrt 2 }}{4}.\frac{{\sqrt 2 }}{2}}  = \frac{{a\sqrt {10} }}{4}\].

Xét \[\Delta MIN\] vuông tại \[I\]nên \[MI = \sqrt {M{N^2} - N{I^2}}  = \sqrt {\frac{{3{a^2}}}{2} - \frac{{5{a^2}}}{8}}  = \frac{{a\sqrt {14} }}{4}\].

Mà \[MI//SO,\,MI = \frac{1}{2}SO \Rightarrow SO = \frac{{a\sqrt {14} }}{2}\].

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ:

Ta có: \[O\left( {0\,;\,0;\,0} \right)\], \[B\left( {0\,;\,\frac{{\sqrt 2 }}{2};\,0} \right)\], \[D\left( {0\,;\, - \frac{{\sqrt 2 }}{2};\,0} \right)\], \[C\left( {\frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[N\left( {\frac{{\sqrt 2 }}{4}\,;\,\frac{{\sqrt 2 }}{4};\,0} \right)\],

\[A\left( { - \frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[S\left( {0\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\], \[M\left( { - \frac{{\sqrt 2 }}{4}\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\].

Khi đó \[\overrightarrow {MN}  = \left( {\frac{{\sqrt 2 }}{2}\,;\,\frac{{\sqrt 2 }}{4}\,;\, - \frac{{\sqrt {14} }}{4}\,} \right)\,\,\], \[\overrightarrow {SB}  = \left( {0\,;\,\frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\], \[\overrightarrow {SD}  = \left( {0\,;\, - \frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\].

Vectơ pháp tuyến mặt phẳng \[\left( {SBD} \right)\]: \[\overrightarrow n  = \overrightarrow {SB}  \wedge \overrightarrow {SD}  = \left( { - \sqrt 7 \,;\,0\,;\,0} \right)\].

Suy ra \[{\rm{sin}}\left( {MN\,,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - \sqrt 7 .\frac{{\sqrt 2 }}{2}} \right|}}{{\sqrt 7 .\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\].

Lời giải

Chọn A

Đường thẳng \(d\)có véc tơ chỉ phương là \(\overrightarrow u  = \left( { - 1;2;1} \right)\)

Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {1; - 1;0} \right)\)

Gọi \(\alpha \)là góc giữa Đường thẳng \(d\)và Mặt phẳng \(\left( P \right)\). Khi đó ta có

\(\sin \alpha  = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = \frac{{\left| { - 1.1 + 2.\left( { - 1} \right) + 1.0} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\)

Do đó α=600

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP