Câu hỏi:

11/08/2025 8 Lưu

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = 2\sqrt 3 \) và \(AA' = 2.\) Gọi \(M,\,N,\,P\) lần lượt là trung điểm các cạnh \(A'B',\,A'C'\) và \(BC\) (tham khảo hình vẽ bên). Côsin của góc tạo bởi hai mặt phẳng \(\left( {AB'C'} \right)\) và \(\left( {MNP} \right)\) bằng

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = 2√3 và AA' = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A'B', A'C' và BC (tham khảo hình vẽ bên). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = 2√3 và AA' = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A'B', A'C' và BC (tham khảo hình vẽ bên). (ảnh 2)

Gắn hệ trục tọa độ \[{\rm{Ox}}yz\] như hình vẽ \( \Rightarrow P\left( {0;0;0} \right),\,A\left( {3;0;0} \right),\,B\left( {0;\sqrt 3 ;0} \right),\,C\left( {0; - \sqrt 3 ;0} \right),\,A'\left( {3;0;2} \right),\,B'\left( {0;\sqrt 3 ;2} \right),\,C'\left( {0; - \sqrt 3 ;2} \right)\)

nên \(M\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};2} \right),\,N\left( {\frac{3}{2}; - \frac{{\sqrt 3 }}{2};2} \right)\)

Ta có vtpt của mp\(\left( {AB'C'} \right)\) là \(\overrightarrow {{n_1}}  = \frac{1}{{2\sqrt 3 }}\left[ {\overrightarrow {AB'} ,\overrightarrow {AC'} } \right] = \left( {2;0;3} \right)\) và vtpt của mp\(\left( {MNP} \right)\) là \(\overrightarrow {{n_2}}  = \left( {4;0; - 3} \right)\)

Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {AB'C'} \right)\) và mp\(\left( {MNP} \right)\)\( \Rightarrow c{\rm{os}}\varphi  = \left| {c{\rm{os}}\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {8 - 9} \right|}}{{\sqrt {13} \sqrt {25} }} = \frac{{\sqrt {13} }}{{65}}\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và N lần lượt là trung điểm của hai cạnh SA và BC (ảnh 1)

Gọi \[I\] hình chiếu của \[M\] lên \[\left( {ABCD} \right)\], suy ra \[I\] là trung điểm của \[AO\].

Khi đó \[CI = \frac{3}{4}AC = \frac{{3a\sqrt 2 }}{4}\].

Xét \[\Delta CNI\]có: \[CN = \frac{a}{2}\], \[\widehat {NCI} = {45^o}\].

Áp dụng định lý cosin ta có:

\[NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos {{45}^o}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{9{a^2}}}{8} - 2.\frac{a}{2}.\frac{{3a\sqrt 2 }}{4}.\frac{{\sqrt 2 }}{2}}  = \frac{{a\sqrt {10} }}{4}\].

Xét \[\Delta MIN\] vuông tại \[I\]nên \[MI = \sqrt {M{N^2} - N{I^2}}  = \sqrt {\frac{{3{a^2}}}{2} - \frac{{5{a^2}}}{8}}  = \frac{{a\sqrt {14} }}{4}\].

Mà \[MI//SO,\,MI = \frac{1}{2}SO \Rightarrow SO = \frac{{a\sqrt {14} }}{2}\].

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ:

Ta có: \[O\left( {0\,;\,0;\,0} \right)\], \[B\left( {0\,;\,\frac{{\sqrt 2 }}{2};\,0} \right)\], \[D\left( {0\,;\, - \frac{{\sqrt 2 }}{2};\,0} \right)\], \[C\left( {\frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[N\left( {\frac{{\sqrt 2 }}{4}\,;\,\frac{{\sqrt 2 }}{4};\,0} \right)\],

\[A\left( { - \frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[S\left( {0\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\], \[M\left( { - \frac{{\sqrt 2 }}{4}\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\].

Khi đó \[\overrightarrow {MN}  = \left( {\frac{{\sqrt 2 }}{2}\,;\,\frac{{\sqrt 2 }}{4}\,;\, - \frac{{\sqrt {14} }}{4}\,} \right)\,\,\], \[\overrightarrow {SB}  = \left( {0\,;\,\frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\], \[\overrightarrow {SD}  = \left( {0\,;\, - \frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\].

Vectơ pháp tuyến mặt phẳng \[\left( {SBD} \right)\]: \[\overrightarrow n  = \overrightarrow {SB}  \wedge \overrightarrow {SD}  = \left( { - \sqrt 7 \,;\,0\,;\,0} \right)\].

Suy ra \[{\rm{sin}}\left( {MN\,,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - \sqrt 7 .\frac{{\sqrt 2 }}{2}} \right|}}{{\sqrt 7 .\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\].

Lời giải

Chọn A

Đường thẳng \(d\)có véc tơ chỉ phương là \(\overrightarrow u  = \left( { - 1;2;1} \right)\)

Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {1; - 1;0} \right)\)

Gọi \(\alpha \)là góc giữa Đường thẳng \(d\)và Mặt phẳng \(\left( P \right)\). Khi đó ta có

\(\sin \alpha  = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = \frac{{\left| { - 1.1 + 2.\left( { - 1} \right) + 1.0} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\)

Do đó α=600

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP