Khẳng định nào sau đây là sai.
A. Qua một điểm nằm ngoài đường tròn luôn kẻ được hai tiếp tuyến với đường tròn.
B. Qua một điểm nằm trên đường tròn kẻ được chỉ một tiếp tuyến với đường tròn.
C. Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.
D. Nếu một đường thẳng đi qua một điểm thuộc đường tròn và vuông góc với bán kính của đường tròn thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Quảng cáo
Trả lời:
Chọn D
Đáp án D là một đáp án sai, đường thẳng muốn là một tiếp tuyến của đường tròn cần đi qua một điểm thuộc đường tròn và vuông góc với bán kính của đường tròn đi qua điểm đó.
Câu minh họa, đường thẳng \[a\] đi qua điểm \[A\] thuộc đường tròn và vuông góc với bán kính tại điểm \[H\].

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(O{C^2}\).
B. \(O{M^2}\).
C. \(O{D^2}\).
D. \(OM\).
Lời giải
Chọn B

Xét nửa \((O)\) có \(MC\) và \(AC\) là hai tiếp tuyến cắt nhau tại \(C\) nên \(OC\) là phân giác \[\widehat {MOA}\] do đó \[\widehat {AOC} = \widehat {COM}\].
Lại có \(MD\) và \(BD\) là hai tiếp tuyến cắt nhau tại \(D\) nên \(OD\) là phân giác \[\widehat {MOB}\] do đó \[\widehat {DOB} = \widehat {DOM}\].
Từ đó \[\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].
Nên \[\widehat {COD} = 90^\circ \] hay \(\Delta COD\) vuông tại \(O\) và \(\widehat {MDO} = \widehat {MOC}\)
Có (g.g) suy ra \(MC.MD = O{M^2}\).
Câu 2
A. A. \(MK = R\sqrt 3 \).
B. B. \(MK = 2R\).
C. C. \(MK = R\).
D. D. \(MK = R\sqrt 2 \).
Lời giải
Chọn C

Xét đường tròn \(\left( {O\;{\rm{;}}\;R} \right)\) có \(MA,\;MB\) là tiếp tuyến
Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) \((1)\)
\(\Delta OAC\) có \[OA = OC\] suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)
\(\widehat {AOB} = \widehat {OCA} + \widehat {OAC}\) (tính chất góc ngoài của tam giác)
Nên \(\widehat {OAC} = \widehat {OCA} = \frac{1}{2}\widehat {AOB}\) \((2)\)
Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\)
Mà \(\widehat {OCA}\), \(\widehat {BOM}\) ở vị trí đồng vị
Nên \(CK\,{\rm{//}}\,OM\) suy ra\(\widehat {MOK} = \widehat {CKO}\) (so le trong).
Chứng minh\(\left( {O\;{\rm{;}}\;R} \right)\) \(\Delta OAM = \Delta OCK\) (c.g.c) suy ra \(CK = OM\) (hai cạnh tương ứng).
Chứng minh \(\Delta KMO = \Delta OCK\) (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc tương ứng).
Mà \(\widehat {COK} = 90^\circ \)(\(KO\)là trung trực của \(BC\)) suy ra \(\widehat {OKM} = 90^\circ \).
Tứ giác \[{\rm{O}}BMK\] có:
+ \(\widehat {MBO} = 90^\circ \) (\(MB\) là tiếp tuyến của \(\left( {O\;{\rm{;}}\;R} \right)\)).
+ \(\widehat {BOK} = 90^\circ \)(\(KO\) là trung trực của \(BC\)).
+ \(\widehat {OKM} = 90^\circ \) (cmt).
Do đó \(OBMK\) là hình chữ nhật suy ra \(MK = OB = R\).
Câu 3
A. \(8\,cm\).
B. \(\frac{{8\sqrt 3 }}{3}\,cm\).
C. \(4\,cm\).
D. \(\frac{{4\sqrt 3 }}{3}\,cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(AE{\rm{//}}OD\).
B. \(AE{\rm{//}}BC\).
C. \(AE{\rm{//}}OC\).
D. \(AE{\rm{//}}OB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(a\) và \(\left( {O;R} \right)\) tiếp xúc nhau khi \(d = R\).
B. \(a\) và \(\left( {O;R} \right)\) cắt nhau khi \(d \le R\).
C. \(a\) và \(\left( {O;R} \right)\) không giao nhau khi \(d > R\).
D. \(a\) và \(\left( {O;R} \right)\) có điểm chung khi \(d \le R\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(AB = 3cm\).
B. \(AB = 4cm\).
C. \(AB = 5cm\).
D. \(AB = 2cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[{\rm{R}}\].
B. \[R\sqrt 2 \].
C. \[2R\].
D. \[R\sqrt 3 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.