Cho đường tròn \((O;R)\) và dây \(AB = 1,2R\). Vẽ một tiếp tuyến song song với \(AB\), cắt các tia \(OA,OB\) lần lượt tại \(E\) và \(F\). Tính diện tích tam giác \(OEF\) theo \(R\).
A. \({S_{OEF}} = 0,75{R^2}\).
B. \({S_{OEF}} = 1,5{R^2}\).
C. \({S_{OEF}} = 0,8{R^2}\).
D. \({S_{OEF}} = 1,75{R^2}\).
Quảng cáo
Trả lời:
Chọn A

Kẻ \(OH \bot EF\) tại \(H\) và cắt \(AB\) tại \(I\) suy ra \(OI \bot AB\) (vì \[AB{\rm{//}}EF\])
Xét \((O)\) có \(OI \bot AB\) tại \(I\) nên \(I\) là trung điểm của \(AB\)
Suy ra \(IA = IB = \frac{{AB}}{2} = 0,6R\). Lại có \(OA = R\).
Áp dụng định lý Phythagore cho tam giác vuông \(OIA\) ta có \(OI = \sqrt {O{A^2} - I{A^2}} = 0,8R\).
Mà \(AI{\rm{//}}EH\) nên \(\frac{{AI}}{{EH}} = \frac{{OI}}{{OH}} = \frac{{0,8R}}{R}\) nên \(EH = \frac{{0,6R}}{{0,8}} = 0,75R\)
\(\Delta OEF\) cân tại \(O\) (vì \(\widehat E = \widehat F = \widehat {BAO} = \widehat {ABO}\)) có \(OH \bot EF\) nên \(H\) là trung điểm của \(EF\).
\[EF = 2EH = 1,5R\] nên \[{S_{EOF}} = \frac{{OH.EF}}{2} = 0,75{R^2}\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(O{C^2}\).
B. \(O{M^2}\).
C. \(O{D^2}\).
D. \(OM\).
Lời giải
Chọn B

Xét nửa \((O)\) có \(MC\) và \(AC\) là hai tiếp tuyến cắt nhau tại \(C\) nên \(OC\) là phân giác \[\widehat {MOA}\] do đó \[\widehat {AOC} = \widehat {COM}\].
Lại có \(MD\) và \(BD\) là hai tiếp tuyến cắt nhau tại \(D\) nên \(OD\) là phân giác \[\widehat {MOB}\] do đó \[\widehat {DOB} = \widehat {DOM}\].
Từ đó \[\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].
Nên \[\widehat {COD} = 90^\circ \] hay \(\Delta COD\) vuông tại \(O\) và \(\widehat {MDO} = \widehat {MOC}\)
Có (g.g) suy ra \(MC.MD = O{M^2}\).
Câu 2
A. \(a\) và \(\left( {O;R} \right)\) tiếp xúc nhau khi \(d = R\).
B. \(a\) và \(\left( {O;R} \right)\) cắt nhau khi \(d \le R\).
C. \(a\) và \(\left( {O;R} \right)\) không giao nhau khi \(d > R\).
D. \(a\) và \(\left( {O;R} \right)\) có điểm chung khi \(d \le R\).
Lời giải
Chọn B
Đáp án B: sai, vì khi \(d = R\) thì đường thẳng \(a\) và đường tròn \(\left( {O;R} \right)\) tiếp xúc nhau.
Câu 3
A. \(AE{\rm{//}}OD\).
B. \(AE{\rm{//}}BC\).
C. \(AE{\rm{//}}OC\).
D. \(AE{\rm{//}}OB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(R\).
B. \(R\sqrt 2 \).
C. \(2R\).
D. \(R\sqrt 3 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Trục tung cắt đường tròn và trục hoành tiếp xúc với đường tròn.
B. Trục hoành không cắt đường tròn và trục tung tiếp xúc với đường tròn.
C. Cả hai trục toạ độ đều cắt đường tròn.
D. Cả hai trục toạ độ đều tiếp xúc với đường tròn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(BD = 2cm\).
B. \(BD = 4cm\).
C. \(BD = 1,8cm\).
D. \(BD = 3,6cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[{\rm{R}}\].
B. \[R\sqrt 2 \].
C. \[2R\].
D. \[R\sqrt 3 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.