Câu hỏi:

18/09/2025 300 Lưu

Cho tam giác \[ABC\] cân tại \(A.\) Các đường cao \(AH\) và \(BK\)cắt nhau ở \(I,\) vẽ đường tròn tâm \(O\) đường kính \(AI.\) Khi đó ta có

A. \(BK\) là tiếp tuyến của \(\left( O \right)\).

B. \({\rm{\;BC}}\)là tiếp tuyến của \(\left( O \right)\).

C. \(AC\) là tiếp tuyến của \(\left( O \right)\).

D. \(HK\) là tiếp tuyến của \(\left( O \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cho tam giác \[ABC\] cân tại \(A.\) Các đường cao \(AH\) và \(BK\)cắt nhau ở \(I,\) vẽ đường tròn tâm \(O\) đường kính \(AI.\) Khi đó ta có (ảnh 1)

Do \[\Delta ABC\] cân tại \[A\] (gt) nên đường cao\(AH\) đồng thời là trung tuyến. Suy ra \[BH = HC\].

Do \(BK\) là đường cao của \[\Delta ABC\]. Suy ra \(BK \bot AC\).

\[\Delta KBC\]vuông tại \(K\) có \(H\) là trung điểm của \(BC\) nên \(KH = BH = HC = \frac{1}{2}BC\).

Suy ra \[\Delta KBH\] cân tại \[H\] nên \(\widehat {KBH} = \widehat {HKB}\) \((1)\).

\(K \in (O)\)đường kính \(AI\) nên \(KO = IO = R\). Suy ra \[\Delta KOI\] cân tại \[O\] nên \(\widehat {OKI} = \widehat {OIK}\) \((2)\).

Từ \((1)\)và \((2)\) suy ra \(\widehat {OKB} + \widehat {HKB} = \widehat {OIK} + \widehat {IBH} = \widehat {HIB} + \widehat {IBH} = 90^\circ \)

Suy ra \(HK \bot OK\) tại \(K\).

Do đó \(HK\)là tiếp tuyến của \((O)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax,By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên nửa đường tròn (M khác A,B) vẽ tiếp tuyến  (ảnh 1)

Xét nửa \((O)\) có \(MC\) và \(AC\) là hai tiếp tuyến cắt nhau tại \(C\) nên \(OC\) là phân giác \[\widehat {MOA}\] do đó \[\widehat {AOC} = \widehat {COM}\].

Lại có \(MD\) và \(BD\) là hai tiếp tuyến cắt nhau tại \(D\) nên \(OD\) là phân giác \[\widehat {MOB}\] do đó \[\widehat {DOB} = \widehat {DOM}\].

Từ đó \[\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

Nên \[\widehat {COD} = 90^\circ \] hay \(\Delta COD\) vuông tại \(O\) và \(\widehat {MDO} = \widehat {MOC}\)

Có (g.g) suy ra \(MC.MD = O{M^2}\).

Lời giải

Chọn C

Cho \(\left( {O\;{\rm{;}}\;R} \right)\). Từ điểm \(M\) ở ngoài đường tròn vẽ tiếp tuyến \(MA,MB\) đến đường tròn. Đường trung trực của đường kính \(BC\) cắt đường thẳng \(AC\) tại \(K\). Tính (ảnh 1)

Xét đường tròn \(\left( {O\;{\rm{;}}\;R} \right)\) có \(MA,\;MB\) là tiếp tuyến

Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) \((1)\)

 \(\Delta OAC\) có \[OA = OC\] suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)

\(\widehat {AOB} = \widehat {OCA} + \widehat {OAC}\) (tính chất góc ngoài của tam giác)

Nên \(\widehat {OAC} = \widehat {OCA} = \frac{1}{2}\widehat {AOB}\) \((2)\)

Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\)

 Mà \(\widehat {OCA}\), \(\widehat {BOM}\) ở vị trí đồng vị

Nên \(CK\,{\rm{//}}\,OM\) suy ra\(\widehat {MOK} = \widehat {CKO}\) (so le trong).

Chứng minh\(\left( {O\;{\rm{;}}\;R} \right)\) \(\Delta OAM = \Delta OCK\) (c.g.c) suy ra \(CK = OM\) (hai cạnh tương ứng).

Chứng minh \(\Delta KMO = \Delta OCK\) (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc tương ứng).

Mà \(\widehat {COK} = 90^\circ \)(\(KO\)là trung trực của \(BC\)) suy ra \(\widehat {OKM} = 90^\circ \).

Tứ giác \[{\rm{O}}BMK\] có:

+ \(\widehat {MBO} = 90^\circ \) (\(MB\) là tiếp tuyến của \(\left( {O\;{\rm{;}}\;R} \right)\)).

+ \(\widehat {BOK} = 90^\circ \)(\(KO\) là trung trực của \(BC\)).

+ \(\widehat {OKM} = 90^\circ \) (cmt).

Do đó \(OBMK\) là hình chữ nhật suy ra \(MK = OB = R\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a\) và \(\left( {O;R} \right)\) tiếp xúc nhau khi \(d = R\).

B. \(a\) và \(\left( {O;R} \right)\) cắt nhau khi \(d \le R\).

C. \(a\) và \(\left( {O;R} \right)\) không giao nhau khi \(d > R\).

D. \(a\) và \(\left( {O;R} \right)\) có điểm chung khi \(d \le R\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP